

Security alarm system — feeling of security or cause for alarm?

Kirils Solovjovs https://kirils.org/

 Lead researcher at Possible Security, Latvia

Author

- Hacking and breaking things
 - Network flow analysis
 - Reverse engineering
 - Social engineering
 - Legal dimension
- Follow me on twitter / @KirilsSolovjovs

- Alarm systems
- Paradox intro
- Radio specs for remote 🖉
- Attack tool development
 - M5Stack 🖉
- First steps in firmware reverse engineering

Skip to page 14 if you've seen previous presentations

Security alarm systems

NULLCON

Security alarm systems

3998 3111 9309 1400 8248 4584 9450 5617 6550 8245 6979 9878 6101 4971 1294 9576 5005 2789 **3013** 3627 6856 5132 4920 5076 7500 7065 0643 9302 1744 3725 8432 1275 1128 1497 8657 9264

What could go wrong?

INTRO

Paradox security systems

- Canadian company, founded 1989
- Modular security alarms
 - SPECTRA SP
 - Expandable Security Systems
 - EVO
 - High-Security & Access Systems
 - MAGELLAN
 - Wireless Security Systems

master

heart on the system – "motherboard"

- panel
- ancillaries
 - battery
 - power supply
 - siren

LCON

Main-components

combus slaves

provide two-way communication

- keypads
- modules
 - expansion
 - printer
 - listen-in
 - etc.

Main-components

• **zone** interrupt devices

input, measures resistance \Rightarrow chaining

- magnetic sensors
- PIR sensors
- panic buttons
- etc.

RADIO

TDA5255 433-435MHz

There it is

᠕ᠰᠰ	law how have	www.www.www.www.www.www.www.www.www.ww	when my my have	n which when when w	monthe
4	33.5	433.6	433.7	433.8	433.9

We gotta go closer

- ~ 433.9MHz, Tx and Rx share the same channel
 - same packet sent in short bursts (8 times)
 - 1 reply from panel

• 1-level ASK

• bit length = 200µs

<u>closelier</u>

NULLCON

NTERNATIONAL SECURITY CONFEI

000

- init = 1111
- synchronization preamble = 0101010101010101010101010101
- packet length init (4b) + preamble (24b) + data (112b)

Structure

• to be continued elsewhere :-)

ATTACK TOOL

NULLCON SECURITY CUM ENLINE ZOIS

- combus 4 wire bus
 - black = GROUND

Electrical layer

- red = POWER
- yellow = CLOCK
- green = DATA

- 40ms between packet bursts
 - 1 clock cycle = 1ms; signal = 1kHz

+40 ms

+30 ms

+10 ms

D0

+20 ms

+50 ms

+60 ms

+80 ms

+70 ms

+90 ms

+100 ms

Signal layer

+120 ms

+110 ms

+140 ms

+130 ms

Full signal encoding

- CLOCK = high
 - slave pulls <u>down</u> to send "1"
- CLOCK = low
 - master pulls <u>up</u> to send "1"

Hardware setup

NULLCON SECURITY

Packet structure

command checksum unused channel-request

checksum ← 0 for i in @command to @checksum - 1: checksum ← (checksum + *i) % 100

Checksum

- No encryption used
- Text as fixed length (often 16

- 0x20 = filler
- Numbers usually packed BCD
 - "0" is 0b1010 = 0xA
 - no encryption, but hey, at least we got obfuscation!

Payloads

DEMO ONE

Spoofing data / keypad emulation

- But why?
 - Slowly bruteforcing stuff
 - Protocol fuzzing
 - Replay attacks
 - Open source keypads?
- OK. Can we?
 - Sure we can!

DEMO TWO

FIRMWARE INTRO

(Look for a conference near you!)

NULLCON NETWORK SCHETCONFEENCE STM M41T56, RTC, 56B NVRAM

STM 24512WP, EERPOM, 64KiB, page=128b

STM 4256BWP, EERPOM, 32KiB, page=64b

RENESAS R5F36506, MCU, ROM 128KiB+16KiB, flash 4KiB, RAM 12KiB

Now-what?

+ coding missing support

SUMMARY

"Digiplex and Digiplex EVO systems provide the highest level of protection for banks, high-security military and government sites, luxurious residential homes and any place where maximum security is essential."

- https://www.paradox.com/Products/default.asp?CATID=7

- Attack tool based on M5Stack created
 - active keypad emulation support
- (Some) RF attacks tested
- Firmware reverse engineering unlikely, however EEPROM can be read

Results

- Make attack tool even more modular & more functional
 - Find the right resistors!
- Continue testing RF attacks
- Pull configuration (including codes) from EEPROM
- COMBUS over radio (MG?)

Slides on https://kirils.org/ Tools on https://github.com/0ki/paradox I'm on https://twitter.com/KirilsSolovjovs

