

Frontcon 2018, Riga (C) Possible Security, 2018 2

JavaScript security: a retrospective

The floor is Lava Java. Script.

Frontcon 2018, Riga (C) Possible Security, 2018 3

About me

● IT security expert, > 10 years
– Mg.sc.comp, CEH, CySA+

● Owner and Lead Researcher at
Possible Security

● Hacking and breaking things
– http://kirils.org/
– http://possiblesecurity.com/news/

Frontcon 2018, Riga (C) Possible Security, 2018 4

Contents

● Security fundamentals
● Birth of JavaScript
● JavaScript feature set & attacks
● Conclusions

Frontcon 2018, Riga (C) Possible Security, 2018 5

Security fundamentals – CIA triad

Frontcon 2018, Riga (C) Possible Security, 2018 6

Security fundamentals – Confidentiality

● Confidentiality is the property, that information is not made
available or disclosed to unauthorized individuals, entities, or
processes.

Frontcon 2018, Riga (C) Possible Security, 2018 7

Security fundamentals – Integrity

● Integrity means that data cannot be modified in an unauthorized
or undetected manner.

Frontcon 2018, Riga (C) Possible Security, 2018 8

Security fundamentals – Availability

● Availability is the property of the information system to be
available when it is needed.

Frontcon 2018, Riga (C) Possible Security, 2018 9

JavaScript

● Just a tad over 20 years old
● 1995 @Netscape

– Scheme or Java?
– scripting or static?
– JavaScript!

● C-like / Java-like syntax
● Objects: BOM + DOM
● same-origin policy (for DOM)

– same protocol, host, and port

JS

Frontcon 2018, Riga (C) Possible Security, 2018 10

JScript

● 1996
– Microsoft creates a clone of JavaScript
– Netscape pushes for standardization

● ECMA-262 (ECMAScript)

● 1997
– ES1 is published

● 1998
– ES2 (formal spec changes) + DOM1

Frontcon 2018, Riga (C) Possible Security, 2018 11

ECMAScript

● 1999
– ES3 is born
– string functions, regexps
– do-white
– try-catch
– etc.

● 2000
– DOM2

● 2004
– DOM3

Frontcon 2018, Riga (C) Possible Security, 2018 12

DOM 1 => DOM2

Frontcon 2018, Riga (C) Possible Security, 2018 13

DOM2 => DOM3

Frontcon 2018, Riga (C) Possible Security, 2018 14

ECMAScript

● Fast forward ten years 1999 => 2009
● ES 5

– “use strict”
– JSON.stringify() / JSON.parse()
– array methods

● .indexOf(), .map(), etc.

– func.bind()

Frontcon 2018, Riga (C) Possible Security, 2018 15

Today + future

● 2011 – WebSockets
● 2015...

– new ECMAScript YYYY version every year

Frontcon 2018, Riga (C) Possible Security, 2018 16

Attacks

Frontcon 2018, Riga (C) Possible Security, 2018 17

Content type misinterpretation

● Allows forcing browser (MSIE) to misinterpret the content type

[2008, IE only]
● X-Content-Type-Options: nosniff

Frontcon 2018, Riga (C) Possible Security, 2018 18

Clickjacking

● Using transparent elements to hijack mouse clicks

[2010, RFC in 2013]
● X-Frame-Options: deny

– prevents content to be loaded as a frame source

Frontcon 2018, Riga (C) Possible Security, 2018 19

Cross-site scripting

● Reflected
– hxxp://site.com/file.php?data=hello<script>alert(1);</script>

● Stored
– STORE → hxxp://site.com/store.php?

data=hello<script>alert(1);</script>
– RETRIEVE ← hxxp://site.com/read.php

Frontcon 2018, Riga (C) Possible Security, 2018 20

Solution – X-XSS-Protection

[2010, IE only at first]
● X-XSS-Protection: 1

– built-in blacklist filter
– NOT A FULL PROTECTION

Frontcon 2018, Riga (C) Possible Security, 2018 21

Solution – Content-Security-Policy

[2015]
● Content-Security-Policy: script-src 'self'
● Defines where can different resources be loaded from. Disables

inline JavaScript.
● X-XSS-Protection now a part of CSP
● QUITE EFFECTIVE

Frontcon 2018, Riga (C) Possible Security, 2018 22

Referrer attacks

● Could be used for tracking, locating private and local systems,

[2017]
● Referrer-Policy: no-referrer
● Referrer-Policy: strict-origin
● Defines what kind of referrer information to send in what cases.

Frontcon 2018, Riga (C) Possible Security, 2018 23

Conclusions

● New features in ECMAScript + DOM Levels provide for ever
increasing vulnerability surface
– due to browser exploits (implementation bugs)
– due to lack of explicit protection

● Browser manufacturers try to mitigate this increased risk by
adding additional protections

● The race will continue!

Frontcon 2018, Riga (C) Possible Security, 2018 24

JavaScript security: a retrospective

The floor is Lava Java. Script.

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

