

Network concepts introduction δ wireshark workshop

@KirilsSolovjovs

ISO/OSI+DoD model

	OSI (Open Source Interconnection) 7 Layer Mod	el			
Layer	Application/Example	Central Pro	Devic tocols	e/	DOD4 Model
Application (7) Serves as the window for users and application processes to access the network services.	End User layer Program that opens what was sent or creates what is to be sent Resource sharing • Remote file access • Remote printer access • Directory services • Network management	Use Applicat SMT	ions P		
Presentation (6) Formats the data to be presented to the Application layer. It can be viewed as the "Translator" for the network.	Syntax layer encrypt & decrypt (if needed) Character code translation • Data conversion • Data compression • Data encryption • Character Set Translation	JPEG/AS EBDIC/TIF PICT	SCII F/GIF	G	Process
Session (5) Allows session establishment between processes running on different stations.	Synch & send to ports (logical ports) Session establishment, maintenance and termination • Session support - perform security, name recognition, logging, etc.	RPC/SQL NetBIOS n	Ports /NFS ames	AT	
Transport (4) Ensures that messages are delivered error-free, in sequence, and with no losses or duplications.	TCP Host to Host, Flow Control F Message segmentation • Message acknowledgement • A Message traffic control • Session multiplexing C	TCP/SPX	/UDP	WA	Host to Host
Network (3) Controls the operations of the subnet, deciding which physical path the data takes.	Packets ("letter", contains IP address) Routing • Subnet traffic control • Frame fragmentation • Logical-physical address mapping • Subnet usage accounting	Routers		Y Can be used	Internet
Data Link (2) Provides error-free transfer of data frames from one node to another over the Physical layer.	Frames ("envelopes", contains MAC address) [NIC card — Switch — NIC card] (end to end) Establishes & terminates the logical link between nodes • Frame traffic control • Frame sequencing • Frame acknowledgment • Frame delimiting • Frame error checking • Media access control	Switch Bridge WAP PPP/SLIP	Land	on all layers	Network
Physical (1) Concerned with the transmission and reception of the unstructured raw bit stream over the physical medium.	Physical structure Cables, hubs, etc. Data Encoding • Physical medium attachment • Transmission technique - Baseband or Broadband • Physical medium transmission Bits & Volts	Hub	Layers		

Topics for our workshop

- Network layer models
- Ethernet, WiFi
- Layer3: ARP, ICMP, IPv4, IPv6
- Layer4: UDP, TCP
- Routing
- Application level protocols: DNS, SMTP, FTP, HTTP, ...
- Punching holes in firewalls, breaking WPA2 and much more

How is this different? (from other networking courses)

- We'll be taking the academic approach and talking a lot:
 - about what we see
 - about why stuff happens
- We'll be taking the hacker approach and start the other way around: with the hands-on
- "Shoot first, ask questions later"

Capturing data locally

Just make sure to enable promiscuous mode* and you're all set.

- * do not drop packets not addressed to you
- Network card drivers have to support this.

- PRO TIP: Can also be used to capture USB data, GSM data, etc...*
 - * may require additional tools

Capturing data remotely

- What if you're not physically present on the wire?
 - port mirroring
 - TaZmen Sniffer Protocol (TZSP)
 - capture with tcpdump and import a cap file later
 - tcpdump -i *ethO* -s 65535 -w *blah*

ISO/OSI+DoD model

	OSI (Open Source Interconnection) 7 Layer Mod	el			
Layer	Application/Example	Central Pro	Devic tocols	e/	DOD4 Model
Application (7) Serves as the window for users and application processes to access the network services.	End User layer Program that opens what was sent or creates what is to be sent Resource sharing • Remote file access • Remote printer access • Directory services • Network management	Use Applicat SMT	ions P		
Presentation (6) Formats the data to be presented to the Application layer. It can be viewed as the "Translator" for the network.	Syntax layer encrypt & decrypt (if needed) Character code translation • Data conversion • Data compression • Data encryption • Character Set Translation	JPEG/AS EBDIC/TIF PICT	SCII F/GIF	G	Process
Session (5) Allows session establishment between processes running on different stations.	Synch & send to ports (logical ports) Session establishment, maintenance and termination • Session support - perform security, name recognition, logging, etc.	RPC/SQL NetBIOS n	Ports /NFS ames	AT	
Transport (4) Ensures that messages are delivered error-free, in sequence, and with no losses or duplications.	TCP Host to Host, Flow Control F Message segmentation • Message acknowledgement • A Message traffic control • Session multiplexing C	TCP/SPX	/UDP	WA	Host to Host
Network (3) Controls the operations of the subnet, deciding which physical path the data takes.	Packets ("letter", contains IP address) Routing • Subnet traffic control • Frame fragmentation • Logical-physical address mapping • Subnet usage accounting	Routers		Y Can be used	Internet
Data Link (2) Provides error-free transfer of data frames from one node to another over the Physical layer.	Frames ("envelopes", contains MAC address) [NIC card — Switch — NIC card] (end to end) Establishes & terminates the logical link between nodes • Frame traffic control • Frame sequencing • Frame acknowledgment • Frame delimiting • Frame error checking • Media access control	Switch Bridge WAP PPP/SLIP	Land	on all layers	Network
Physical (1) Concerned with the transmission and reception of the unstructured raw bit stream over the physical medium.	Physical structure Cables, hubs, etc. Data Encoding • Physical medium attachment • Transmission technique - Baseband or Broadband • Physical medium transmission Bits & Volts	Hub	Layers		

Encapsulation

Physical layer

Specifies the electrical, mechanical, procedural, and functional requirements for activating, maintaining, and deactivating a physical link between end systems.

Data Link Layer

- Delivers messages to the proper device.
- Formats the message into data frames and adds a header containing the hardware destination and source address
 - Ethernet = MAC addresses (6 bytes)
- Consists of two parts:
 - Media Access Control
 - Logical Link Control

Ethernet

- e.g. Manchester encoding
- MAC addresses = 6 bytes
 - e.g. 08:1e:c7:f8:ec:91
- First 3 bytes = OUI
 - Organizationally Unique Identifier assigned by the IEEE
 - First byte usually xxxxx00
- Last 3 bytes = Vendor assigned

WiFi standards

Standard	Year	Frequency	Bandwidth	Modulation	Speeds
802.11-1997	1997	2.4 GHz	22 MHz	DSSS & FHSS	1 – 2 Mbps
802.11a	1999	5 GHz	20 MHz	OFDM	6 – 54 Mbps
802.11b	1999	2.4 GHz	22 MHz	DSSS	1 – 11 Mbps
802.11g	2003	2.4 GHz	20 MHz	OFDM	6 – 54 Mbps
802.11n	2009	2.4 & 5 GHz	40 MHz	MIMO-OFDM	7.2 – 135 Mbps
802.11ac	2013	5 GHz	160 MHz	MIMO-OFDM	7.2 – 780 Mbps
802.11ad	2012	60 GHz	2.16 GHz	OFDM	626 – 6756.75 Mbps

WiFi security

- no encryption
- WEP
- WPA
- WPA2
- 802.1x

Network layer

Responsible for addressing and routing between devices that are not locally attached.

IP

- Internet Protocol checks the destination address of each packet, and, using a routing table, decides where a packet is to be sent next, choosing the best path.
- IP addresses are assigned in a hierarchical system
- Network part and host part
- IPv4 vs IPv6
 - NB! Addresses are by far not the only difference between IPv6 and IPv4.

IPv4 addresses

- 4 bytes, e.g. 216.39.106.163
- Classes:
 - A 1.0.0.0 to 126.255.255.255
 - B 128.0.0.0 to 191.255.255.255
 - C 192.0.0.0 to 223.255.255.255
 - D 224.0.0.0 to 239.255.255.255
 - multicast
 - E 240.0.0.0 to 254.255.255.255
 - r&d

/IPv4 addresses (cont.)

- CIDR notation
- 0.0.0.0 default route
- 127.0.0.1 loopback
- 255.255.255.255 all nodes on the current network (broadcast)

Private IPv4 address space

- 10.0.0.0 to 10.255.255.255
- 172.16.0.0 to 172.31.255.255
- 192.168.0.0 to 192.168.255.255
- Can be used with NAT
 - Network address translation intended to help limit the effects of IPv4 address exhaustion

ARP

- Address Resolution Protocol allows to find the hardware address of a host from a known IP address.
- 10.0.1.254 \rightarrow 08:1e:c7:f8:ec:91

ICMP is a management protocol and messaging service provider for IP.

• e.g.

- Destination unreachable
- TTL exceeded
- echo request and echo reply

IPv6

- IPv6 essentially creates a parallel, independent Layer3 network.
- 340282366920938463463374607431768211456 addresses
- 2001:14d8:ffa2:0000:0000:0000:0312:7007
- 2001:14d8:ffa2::312:7007

Transport layer

- Responsible for the reliable transfer of data, by ensuring that data arrives at its destination error-free and in order.
 - Connection-oriented requires that a connection with specific agreed-upon parameters be established before data is sent.
 - Connectionless requires no connection before data is sent.

User Datagram Protocol

- Stateless, transaction-oriented
- Best effort" transport
- Notable features include:
 - Minimalist design
 - No control
 - No retransmissions

Bit 0	Bit 15	Bit 16	Bit 31
Source por	t (16)	Destination port (16)	
Length (16)	Checksum (16)	8 bytes
Data (if any)			

Fun demo

Punching holes in firewalls and NAT routers with UDP

Transport Control Protocol

- Stateful, connection-oriented
- "Reliable" transport
- Notable features include:
 - 3-way handshake
 - Error detection
 - Ordered transfer
 - Flow control

Bit 0 Bit 15 B			Bit 16	Bit 31
	Source port (16)		Destination port (16)	
		Sequence n	umber (32)	
		Acknowledgme	nt number (32)	
Header length (4)	Reserved (6)	Code bits (6)	Window (16)	
	Checksum (16)		Urgent (16)	
		Options (0 o	or 32 if any)	
		Data (varies)	

CThree-way handshake

zmap

- Modular and open-source network scanner specifically designed for Internet-wide scans
- Scans the whole IPv4 address space in 45 minutes (1Gbps)
- How does it work?

- TTL decreased with every hop
- Routing decisions taken based on the routing table and route distance
- Routing types
 - Static routing
 - Default routing
 - Dynamic routing

Static routing

- Manually setting up routes on each router
- Does not scale well

Default routing

Used to send packets having a destination address in a remote network not in the routing table to the next hop router.

Dynamic routing

- Dynamically updates routing tables on the router using routing protocols:
 - distance-vector protocols determine the route with the least number of hops to be the best route
 - RIP, IGRP, etc.
 - link state protocols (also called shortest path first) use additional metrics and recreate the topology representation on each router; e.g. they can take congestion into account
 - OSPF, etc.

Application level protocols

- DNS
- SMTP
- HTTP

. . .

\$\$ }}

\$\$ }}

\$\$ }}

<u>}</u> } }

"delegated subzone"

\$\$ }}

2422

~

ě

\$\$ }}

~ er

\$\$ }}

\$\$ }}

When a system administrator wants to let another administrator manage a part of a zone, the first administrator's nameserver **delegates** part of the zone to another nameserver.

\$\$ }}

resource records associated with name

Ser

\$\$ }}

~~

\$\$ }}

 $\sum_{n=1}^{\infty}$

zone of authority, managed by a name server

see also: RFC 1034 4.2: How the database is divided into zones.

(some) DNS record types

A / AAAA– Address

- Returns an IP address
- MX Mail exchange
 - Maps a domain name to a list of message transfer agents
- NS Name server
 - Delegates a DNS zone to use the given authoritative name servers
- PTR Pointer
 - Pointer to a canonical name
 - Unlike a CNAME, DNS processing stops and just the name is returned

DNS queries

- dig @nameserver domain record-type +trace
- dig en.wikipedia.org ANY
 - pseudo-record self explanatory
- dig @ns.example.com example.com AXFR
 - pseudo-record authoritative transfer

SMTP Simple Mail Transfer Protocol

SMTP protocol

- **220** mail.example.org ESMTP Sendmail; Fri, 15 Jan 2016 16:27:08 +0000
- HELO relay.example.org
 - 250 mail.example.org Hello relay.example.org [192.168.2.3] (may be forged), pleased to meet you
- MAIL FROM: <alice@example.org>
 - 250 2.1.0 alice@example.org... Sender ok
- RCPT TO: <bob@example.com>
 - 250 2.1.5 bob@example.com... Recipient ok

SMTP protocol

DATA

- 354 Enter mail, end with "." on a line by itself

From: "Alice Alice" <alice@example.com>
 To: "Bob Bob" <bob@example.org>
 Date: Fri, 15 Jan 2016 16:27:03 +0000

Subject: Test e-mail

Testing.

SMTP protocol

- 250 2.0.0 vB3DJ2cP000123 Message accepted for delivery
- QUIT
 - 221 2.0.0 mail.example.org closing connection

HTTP request

GET /page HTTP/1.1

Host: example.com

User-Agent: Mozilla/5.0 Gecko/20100101 Firefox/50.0

Accept: text/html,application/xhtml+xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Cookie: hell=o; data=1001090933

Connection: keep-alive

HTTP response

HTTP/1.1 200 OK

Date: Thu, 01 Aug 2016 12:02:57 GMT

Server: Apache

Content-Length: 2667

Keep-Alive: timeout=3, max=20

Connection: Keep-Alive

Content-Type: text/html

<html>

Back to wireshark

Step-by-step analysis of opening a webpage

WIRESHARK

That is all folks!

possible.lv

IT security services

Visit me at: @KirilsSolovjovs kirils.org