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SUMMARY

In the previous years, Skype has gained more and more popularity, since it is seen as the best VoIP
software with good quality of sound, ease of use and one that works everywhere and with every OS.
Because of its great diffusion, both the operators and the users are, for different reasons, interested in
detecting Skype traffic.

In this paper we propose a real-time algorithm (named Skype-Hunter) to detect and classify Skype
traffic. In more detail, this novel method, by means of both signature-based and statistical procedures, is
able to correctly reveal and classify the signaling traffic as well as the data traffic (calls and file transfers).
To assess the effectiveness of the algorithm, experimental tests have been performed with several traffic
data sets, collected in different network scenarios. Our system outperforms the ‘classical’ statistical traffic
classifiers as well as the state-of-the-art ad hoc Skype classifier. Copyright © 2011 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

In the recent years, the popularity of VoIP-telephony has progressively grown and the majority of
network operators has started offering VoIP-based phone services. Skype [1] has rapidly become
the most well-known example of this consolidated phenomenon: originally developed by the
entrepreneurs who created the pioneering Web application Kazaa, Skype ended 2008 with 405 million
user accounts (more than 42 million of real users [2]), a47% increase from 2007 [3]. According to the
TeleGeography Research [2], in 2008 Skype users spent 33 billion minutes talking to people in other
countries, representing 8% of all international voice traffic. Moreover, Skype usage hit an all-time
peak on 30 March 2009, when more than 17 million users were online at the same time [4].

Unlike other VoIP applications, which generally rely on the client—server architectural model,
Skype operates on a Peer-to-Peer (P2P) overlay network. The communication among Skype users
is established according to the end-to-end paradigm except when a relay node is used for symmetric
NAT and firewall traversal. Skype offers several free services: voice and video communication,
file transfer, chat, buddy list, and Skypeln/SkypeOut to direct call towards the PSTN.

As a consequence of its success, Skype has attracted the attention of both network operators and
researchers. The first ones require that efficient techniques for the identification of Skype traffic are
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developed so as to evaluate its impact on network performance, design effective security policies,
and enforce traffic differentiation strategies.

From a research perspective, the identification and characterization of Skype traffic are hot
topics. Indeed, Skype is based on proprietary protocols, which make extensive use of cryptography,
obfuscation, and anti reverse-engineering procedures [5]. Moreover, Skype adopts ad hoc techniques
to evade NATs and firewalls. As a result, classical statistical traffic classifiers are not suitable
to correctly classify Skype traffic (as demonstrated in Section 5). Thus, innovative classification
techniques should be introduced in order to identify Skype flows: this requires the definition of
new algorithms, able to take into account not only the statistical properties of the traffic, but also
all the Skype features that have been discovered by reverse-engineering procedures.

This paper proposes a joint signature-based and statistical approach that outperforms state-of-
the-art methodologies in the identification of Skype traffic. The paper extends the preliminary work
and results presented by the authors in [6].

In more detail, our primary contribution is the definition of a new algorithm (named Skype-Hunter)
performing real-time classification, distinguishing among voice and video calls, data exchanges, and
underlying control traffic. The algorithm exploits a detailed analysis of the signaling traffic, exchanged
to establish a Skype call and to maintain updated the information concerning Skype peers. The
description of the above-mentioned signaling phase is a further relevant contribution of this work.

The paper is organized as follows. Section 2 presents an overview of the state of the art concerning
Skype protocols and classification. In order to clarify the fundamentals of our proposal, Section 3
analyzes the main characteristics of Skype traffic. Then Section 4 describes the proposed algorithm,
while Section 5 presents the experimental results and the comparison with other approaches.
Finally, Section 6 concludes the paper with some final remarks.

2. RELATED WORKS

At the time of writing, the most complete work concerning Skype traffic classification is [7], where
the authors present a methodology working in real time. In more detail, they propose a framework
based on two different and complementary techniques, for revealing Skype traffic from a traffic aggre-
gate. The first approach, based on Pearson’s Chi Square test, is used to detect Skype’s fingerprints
from the packet framing structure, but is agnostic to VolP-related traffic characteristics. The second
approach, instead, relies on a stochastic characterization of Skype in terms of packet arrival rate
and packet length, which are used as features of a decision process based on Naive Bayesian Classifiers.
As shown in the last section of the paper, our algorithm outperforms this work.

Apart from that, there are several other papers, where algorithms for detecting Skype traffic
are presented, but none of these is able to correctly detect all the different kinds of Skype traffic
(e.g. most of them do not take into account the TCP case). For example, in [8], the authors aim
at identifying relayed, rather than direct traffic, and Skype is chosen as a case study to validate
their approach, while in [9] the authors only focus on the UDP traffic. Finally, in [10] the authors just
focus on a very particular case, detecting Skype by exploiting information derived from a 3G network.

Other works focus on understanding how the Skype protocol works. In [5] the authors provide an
overview on Skype design and functionalities, exploring many operational aspects under different
network scenarios. Users with public IP addresses as well as users behind a port-restricted NAT or
UDP-restricted firewall are taken into account. In [11] the authors aim at studying Skype operations
by means of traffic measurements over a five-month period. The authors analyze the user behavior
for relayed, rather than direct, sessions. Results pertain the population of online clients and their
usage pattern, the number of SNs and bandwidth usage.

Finally, in [12] the authors investigate Skype signaling mechanisms by means of passive measure-
ments, providing insights into Skype signaling mechanisms and analyzing the cost and complexity
of managing Skype P2P overlay network.

None of these papers present neither a complete description of the Skype protocol, nor an
algorithm able to classify the Skype traffic. Hence, the contribution of this paper is two fold: on
one side it completes the description of the Skype architecture, as provided in [5, 11], by adding
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more details both at the flow and at the packet levels (e.g. no previous work has addressed a
detailed study of the packets payload). On the other hand the paper proposes a Skype detection
algorithm, Skype-Hunter, able to detect and classify all the types of traffic generated by Skype.

3. SKYPE TRAFFIC

Before detailing the algorithm implemented to detect Skype traffic, we present a brief analysis
of Skype features, only focusing on those aspects that are essential for the detection phase (for a
more complete description of Skype architecture, please refer to [7]).

It is important to highlight that the Skype protocol has never significantly changed since its first
versions, thus the following description, as well as the presented detection algorithm, is suitable
for all the current versions of the protocol.

Skype is a P2P network composed of several nodes call Skype Clients (SCs). The SCs can
start and receive a call, send instantaneous messages, and transfer files. Since it is a hybrid P2P
network, there are some specialized nodes, called Super Nodes (SNs), which provide additionally
functionalities. In more detail, they are responsible for the connection and disconnection of the
SCs to Skype network. Each SC can be selected as an SN if it has a public IP address and ‘enough’
bandwidth. In that case, it must be able to reply to the requests from the SCs and other SNs and
forward Skype requests towards the correct destination.

Moreover, Skype architecture presents a centralized element, named login server. This server is
responsible for the authentication phase, since each SC must authenticate itself to the login server
before accessing Skype network.

It is important to highlight that the behavior of the application depends on the characteristics of
the network. For example, the presence of firewalls or NATs has an impact on the choice of the
transport protocol to be used: if there are no restrictions on the use of UDP, the application usually
sends the data traffic over UDP and the signaling traffic over TCP. On the contrary, if UDP cannot
be used for some reasons (e.g. a firewall prevents the users from using such protocol), Skype sends
both the signaling and the data traffic over TCP. Before deciding not to use UDP, Skype ‘tries’ to
get through the NAT/firewall, by means of a technique called UDP hole punching [13], which is
a variant of the well-known STUN [14] and TURN [15] protocols.

Let us analyze in more detail the procedure to establish a call, in the following different scenarios:

e no restrictions on the transport protocols:

— signaling traffic: a direct TCP connection between the SCs is used
— data traffic: a direct UDP flow between the SCs is used

e presence of a NAT:

— signaling traffic: a TCP connection through an SN, acting as a relay node, is used
— data traffic: a direct UDP flow between the SCs is used

e presence of a firewall which does not allow the use of UDP:

— signaling traffic: a TCP connection through an SN, acting as a relay node, is used
— data traffic: a TCP connection through an SN, acting as a relay node, is used.

In case the data traffic is not directly forwarded from the caller to the callee, we can have several
scenarios. Indeed each user can ‘decide’ to use arelay node (or anetwork of relay nodes) independently
from the other user. Thus, there can be both symmetric calls, where each user sends its data traffic
through a relay node (see Figure 1(c)), and asymmetric calls where one user sends its traffic directly
to the other, which instead uses a relay node to forward its own traffic (see Figure 1(b)).

Finally, we highlight that in case UDP is used, the messages present an unencrypted header,
named Start of Message (SoM), which is used for realizing a reliable communication. This header
contains, among others, the following fields:

e session identifier (2 bytes) identifies a given Skype session and
e function field (1 byte) used to distinguish the different message exchanges.
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Figure 1. Call scenarios: (a) standard call; (b) call with one relay; and (c) call with two relays.
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Figure 2. Long Skype UDP probe.

The structure of the SoM is different in case of SkypeOut calls. In that case we do not observe
the previously described fields, but in most packets there is a field (first 4 bytes) that always
assumes that the same value in a given call and varies from call to call. Because of that, we assume
here that the field contains the Call Identifier (CID).

On the contrary, if TCP is used the message is completely encrypted.

In the following subsections, we detail some important features of the signaling phase, focusing
on the description of the standard Skype behavior (e.g. the UDP Probe will not take place if a
firewall is blocking UDP traffic).

3.1. Skype UDP Ping

The Skype UDP Ping is a message exchange, periodically carried out by all the SCs, which consists
of two keep-alive messages and is used to advertise the presence of a node in the Skype network.
These messages are characterized by the function field of the message equal to 0x02. Some UDP
flows only consist of the exchange of such messages.

3.2. Skype UDP Probe

The Skype UDP Probe is a message exchange performed when Skype application is launched, to
discover the SNs and the network characteristics (e.g. presence of NATsS, firewalls, etc.). The Skype
UDP Probe consists of four UDP messages (Long Skype UDP Probe): two request messages from
the SC to the SN (U1l and U3) and two reply messages from the SN to the SC (U2 and U4).
Figure 2 depicts the message exchange (here and in the following, s, is the size of the payload of
packet x).
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Figure 3. Skype TCP Handshake.

After the Skype UDP Probe has been executed, the SC performs the algorithm for the SN
selection, which consists of the following steps:

if sy4 =18 bytes then
the SC opens a TCP connection (on the same port number used for the Skype UDP Probe)
and the contacted node becomes its SN
else
if sy4€{26,51,53} bytes then
the contacted node will not be taken into account any longer
# it is likely that these messages can be interpreted as SN ‘negative’ replies
end if
end if

A modified version of this message exchange, only involving Ul and U4 packets (Short Skype
UDP Probe), is repeated until an SN is selected.

Moreover, the SC periodically repeats the Short Skype UDP Probe, to be sure to be always
connected to an available SN.

3.3. Skype TCP Handshake

Once the SN has been selected, the SC has to establish a TCP connection with the SN, so as to
be able to access Skype network. This phase is composed of the following steps:

e a TCP connection is opened towards the first node that has positively answered to the Skype
UDP Probe (over the same port number used for the reception of the Skype UDP Probe
messages)

e in case the TCP connection fails, a new connection is established with another SN that
previously acknowledged a Skype UDP Probe

e once the connection has been established, a message exchange, named Skype TCP Handshake,
is started.

It is worth noting that, although the whole payload is encrypted, these packets are characterized
by the TCP PSH flag set and, some of them, by a fixed size packet payload. Figure 3 displays the
message exchange.

From the figure, we note that five messages are exchanged: T1, T2, and T4 are variable size
messages, while messages T3 and TS5 are 27 and 4 bytes long, respectively.

Since this phase is based on the opening of a TCP connection over a randomly selected port,
it is obvious that this packet exchange can only be realized if there are no restrictions on the
usable ports. On the contrary, if the SC resides behind a NAT or a firewall that blocks the outgoing
connections, the connection is established over TCP port 80 (Skype HTTP Handshake) or 443
(Skype HTTPS Handshake), which are usually left open by the firewalls, since they are respectively
used by the HTTP and HTTPS protocols. Skype uses Transport Layer Security (TLS) protocol
over port 443 and a proprietary protocol over port 80. The message exchange over both ports is
depicted in Figure 4.
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Figure 4. Skype HTTP/HTTPS Handshake: (a) HTTP and (b) HTTPS.

Let us analyze the two cases separately:

e connection over port number 443

— the payload of the first packet is 72 bytes long and the first 56 bytes have a fixed value
(named A; in the following), corresponding to the Client Hello of the TLS 1.0 protocol:

A1 =0x80 0x46 0x01 0x03 0x01 0x00 0x2d 0x00
0x00 0x00 0x10 0x00 0x00 0x05 0x00 0x00
0x04 0x00 0x00 0x0a 0x00 0x00 0x09 0x00
0x00 0x64 0x00 0x00 0x62 0x00 0x00 0x08
0x00 0x00 0x03 0x00 0x00 0x06 0x01 0x00
0x80 0x07 0x00 Oxc0 0x03 0x00 0x80 0x06

0x00 0x40 0x02 0x00 0x80 0x04 0x00 0x80

— the size of R2 is variable, but the first 79 bytes have a fixed value (named A in the
following), corresponding to the TLS Server Hello message:

Ay =0x16 0x03 0x01 0x00 Ox4a 0x02 0x00 0x00
0x46 0x03 0x01 0x40 Ox1b Oxe4 0x86 0x02
Oxad 0xe0 0x29 Oxel 0x77 0x74 Oxe5 0x44
0x59 0xc9 0x9c 0xb4 0x31 0x31 Ox5e 0x02
Oxdd 0x77 0x9d 0x15 Ox4a 0x96 0x09 Oxba
0x5d 0xa8 0x70 0x20 Ox1c Oxa0 Oxed Oxf6
Ox4c 0x63 0x51 Oxae 0x2 f Ox8e Ox4e Oxel
0xe6 0x76 Ox6a 0x0a 0x88 0xd5 O0xd8 Oxc5
0x5c Oxae 0x98 Oxc5 Oxed 0x81 Oxf2 Ox2a
0x69 Oxbf 0x90 0x58 0x00 0x05 0x00

Moreover, some of the fields of Skype SoM that should be variable, are instead fixed in these
packets (i.e., gmt_unix_time field (bytes 12—15)—that should contain a time-stamp—and
random_bytes field (bytes 16—43)—that should contain a random value).

e connection over port number 80

— the payload size of R3 and R5 messages is 27 bytes and 4 bytes, respectively.
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Figure 5. Skype Login Server Connection.

3.4. Skype TCP authentication

Once the connection has been established, the SC needs to authenticate itself to the server. In
the TCP authentication phase, the SC opens a connection with the Login Server (that is the only
centralized server of Skype architecture). Four packets are exchanged during the Skype Login
Server Connection phase (L1, L2, L3, and L4), as depicted in Figure 5.

The main characteristics of these messages are the following:

e LI: The payload size is 5 bytes and it contains a fixed value (named A3 in the following),
that identifies a TLS Server Hello message

A3=0x16 0x03 0x01 0x00 0x00
e L2: The payload size is 5 bytes and it contains a fixed value (named A4 in the following)
A4=0x17 0x03 0x01 0x00 0x00
e [3: The first 15 bytes have a fixed value (named As in the following)
A5 =0x16 0x03 0x01 0x00 Oxcd 0x41
0x03 0x00 0x09 0x80 0xc0 0x01

while in a variable position we find A4
e [4: The first 4 bytes have fixed value (named Ag in the following)

Ae=0x17 0x03 0x01 0x00

It is to be noted that Skype application allows the user to save some authentication credentials.
In that case, this message exchange does not take place when the application is launched.

3.5. Skype HTTP update

This message exchange is performed every time Skype is launched and it is aimed at retrieving
the application updates. It consists of one unencrypted message, which varies depending on the
Skype version, but presents either a fixed value (named A7 in the following) in the first 29 bytes
(Linux versions)

A7 =hexadecimal version of GET (http://ui.skype.com/ui/2/)
or a fixed value (named Ag in the following) in the bytes 95-124 (Windows versions)
Ag =0x48 0x54 0x54 0x50 0x2f 0x31 Ox2e 0x31
0x0d 0x0a 0x55 0x73 0x65 0x72 0x2d 0x41
0x67 0x65 0x6e 0x74 0x3a 0x20 0x53 0x6b
0x79 0x70 0x65 0x99 0x20.
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4. SKYPE-HUNTER

In this section, we describe the algorithm introduced to perform a real-time classification of Skype
traffic, detailing at first the approach used for UDP traffic (both signaling and data traffic) and then
the one used for TCP traffic (both signaling and data traffic). Before discussing the algorithm, we
list the parameters that are used in the following:

D;: payload size of packet i

F: function field of Skype SoM

t;: arrival time of packet i

B; j: bytes from i to j of the packet payload

FLOW: UDP or TCP flow, identified by the ‘classical’ 5-tuple
tentative: preliminary decision

Noxoq: number of packets with function field equal to 0x0d
Bg4: number of bytes sent from the source to the destination
Bgs: number of bytes sent from the destination to the source

By default, the algorithm produces two distinct output flows. The first is used to record all the
events related to Skype control plane, while the second one is used to notify the detection of Skype
calls or file transfers.

4.1. UDP traffic

The procedure developed for detecting and classifying Skype traffic over UDP can be split into two
parts. Indeed, the detection of signaling traffic and data traffic is based on completely disjointed
approaches.

4.1.1. Signaling traffic. Given a flow FLOW, the procedure aimed at detecting and classifying the
signaling traffic over UDP consists of the following steps:

Packet#1: For being Skype signaling traffic, the function field of the first packet shall assume a
predetermined value.

if first packet and F ==0x02 then
dimfirstpkt =D
end if

Packet #2: Then the second packet dimension is checked for verifying whether the given FLOW
can be either a Skype UDP Ping or a Skype UDP Probe.

if second packet and dimfirstpkt #0 then
if F#0x02 and F #0x07 and D, ¢{11, 18,26,51, 53} bytes then
dimfirstpkt =0
FLOW #Short Skype UDP Probe, Long Skype UDP Probe, UDP Skype Ping
EXIT
end if
if F ==0x02 and D, € {18, 26,51, 53} bytes and r, —t; < 10s then
FLOW =Short Skype UDP Probe
record the event into the log file ‘skype_events.txt’
else
if F==0x02 then
FLOW =Skype UDP Ping
record the event into the log file ‘skype_events.txt’
end if
end if
end if
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Packet #3: The dimension of the third packet and its function field value are checked to eventually
determine that the given F L OW is not a Skype UDP ping or a Skype UDP Probe.

if third packet and dimfirstpkt #0 then
if F£0x03 and D3 #dimfirstpkt+5 bytes then
dimfirstpkt =0
FLOW # Long Skype UDP Probe
EXIT
end if
if F#0x02 then
if FLOW== UDP Ping then
FLOW # Skype UDP Ping
record the event into the log file ‘skype_events.txt’
else
FLOW#£ Skype UDP Ping
end if
end if
end if

Packet #4: Finally the dimension of the fourth packet and the value of the corresponding function
field are used to classify the given FLOW as either a Skype UDP Ping or a Skype UDP Probe.

if fourth packet and dimfirstpkt #0 then
if F#0x02 then
if FLOW == Skype UDP Ping then
FLOW#£ Skype UDP Ping
record the event into the log file ‘skype_events.txt’
else
FLOW # Skype UDP Ping
end if
end if
if F ==0x02 and D4 € {18,26,51, 53} then
FLOW =Long Skype UDP Probe
record the event into the log file ‘skype_events.txt’
end if
end if

4.1.2. Data traffic. As far as the detection and classification of the data traffic are concerned, the
system, given a flow, performs the following operations: for each received packet, if the interarrival
time with respect to the previous one is less than 3 s, computes the quantities Noyoq, Bsq, and Bys.
When Ny,os exceeds a given threshold (experimental results have shown that a value of 95 packets
allows us to obtain good performance with an acceptable detection time), the system computes
ratio= B,/ Bsq and distinguishes between three events:

e direct call if ratio> 0.5
o file transfer if 0 <ratio<0.5
e call with relay if ratio=0.

One drawback of this procedure is that a call, where each user forwards the packets through a
relay node (Figure 1(c)), will be classified as a direct call.

Moreover, the system is also able to correctly detect SkypeOut calls, by using a very similar
procedure. The only difference is given by the fact that, after the first messages have been exchanged,
all the packets present in the first 4 bytes have a fixed value, the CID. Moreover, a SkypeOut call
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is characterized by packets forwarded towards a gateway using UDP port number 12340. Thus, in
more detail, the system counts the packets of a given flow that respect the following conditions:

e source or destination port equal to 12430

e payload size greater than 3 bytes

e interarrival time with respect to the previous one less than 3 s
e first 4 bytes have the fix value CID.

If the number of such packets exceeds a given threshold (95 packets, as in the previous case),
the flow is decided to be a SkypeOut call.

4.2. TCP traffic

The procedure developed for detecting and classifying Skype traffic over TCP can be split into
two parts. Indeed, as for UDP traffic, the detection of signaling traffic and data traffic is based on
completely disjointed approaches.

4.2.1. Signaling traffic. Given a flow FLOW, the procedure aimed at detecting and classifying the
signaling traffic over TCP consists of the following steps:

Packet #1: The system checks the dimension of the first packet, the destination port, and some
portions of the payload, to verify whether the given F LOW can be part of one of the following
message exchanges: Skype HTTPS handshake, Skype Login Server Connection, or Skype HTTP
Update.

if first packet then
if destination port==443 and D > 55 bytes and B s6==A then
tentative=Skype HTT PS Handshake
end if
if payload == A3 then
tentative=Skype Login Server Connection
end if
if destination port==_80 and D, € {167,169, 175} bytes and (B 29 == A7 or Bogs 124 == Ag)
then
FLOW =Skype HTT P update
record the event into the log file ‘skype_events.txt’
end if
end if

Packet #2: The dimension of the second packet and some portions of the payload are checked
to verify whether the given FLOW can be either a Skype Login Server Connection or a Skype
HTTPS Handshake.

if second packet then
if D> >4 bytes and tentative== Skype Login Server Connection and B 5== A4 then
tentative=0
end if
if D, >78 bytes and tentative==Skype HTT PS Handshake and Bj gy# A, then
FLOW =Skype HTT PS Handshake
record the event into the log file ‘skype_events.txt’
# the source is a SN
end if
end if
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Packet #3: The dimension of the third packet and some portions of the payload are checked to
verify if the given FLOW can be either a Skype Login Server Connection or a Skype HTTP/TCP
Handshake.

if third packet then
if D3 >4 bytes and tentative== Skype Login Server Connection and Bj, 57 As then
tentative=0
end if
if D3 ==27 and destination port == 80 then
tentative=Skype HTT P Handshake
end if
if D4=27 bytes then
tentative=Skype TCP Handshake
end if
end if

Packet #4: The system checks the dimension of the fourth packet and some portions of the payload
to verify if the given FLOW can be a Skype Login Server Connection.

if fourth packet then
if D4 >3 bytes and tentative== Skype Login Server Connection and Bj 47 A¢ then
FLOW =Skype Login Server Connection
record the event into the log file ‘skype_events.txt’
end if
end if

Packet #5: The dimension of the fifth packet is checked to eventually classify the given FLOW
as either a Skype HTTP Handshake or a Skype TCP Handshake.

if fifth packet then
if Ds==4 bytes and tentative==Skype HTT P Handshake then
FLOW =Skype HTT P Handshake
record the event into the log file ‘skype_events.txt’
# the destination is a SN
end if
if Dg==4 bytes and tentative==Skype TC P Handshake then
FLOW =Skype TCP Handshake
record the event into the log file ‘skype_events.txt’
# the destination is an SN
end if
end if

4.2.2. Data traffic. In the case of TCP traffic, Skype application completely encrypts the packets
payload, making it impossible to reveal a call by means of any signature. Our method is thus based
on a statistical analysis of the traffic. In more detail, we are able to detect Skype traffic (in this
case we cannot distinguish between calls and file transfers) in two distinct ways: revealing Skype
TCP Ping traffic or the connection tear-down signaling traffic.

In the first case, the idea is to reveal Skype calls based on the fact that during a call Skype
application periodically sends some messages with a payload size of 4 bytes and with an inter-time
which is a multiple of 1s. Thus, the system counts the number of 4 bytes long packets that satisfy
the following conditions:

o ti—ti_1€[1,10]s
o the difference between the ‘microseconds part’ of the two timestamps € [—15, 15].
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Table I. Skype score.

Skype score Skype events

1 Simple TCP call

2 TCP call and (Skype TCP Handshake or Skype UDP Probe)

3 TCP call and Skype TCP Handshake and Skype UDP Probe

4 TCP call and (Skype Login Server Connection or Skype HTTP Update)
5 Simple UDP call

6 UDP call and (Skype TCP Handshake or Skype UDP Probe)

7 UDP call and Skype TCP Handshake and Skype UDP Probe

8 UDP call and (Skype Login Server Connection or Skype HTTP Update)

If such a number exceeds a given threshold and the mean dimension of the packets received
prior to the first 19 bytes long packet €[10, 600] bytes, the traffic flow is decided to be a Skype
flow.

Moreover, if the following conditions are fulfilled:

e number of packets greater than 4
e mean packet dimension € [100, 600] bytes
e total number of bytes belonging to the flow greater than 40 kbytes

then the flow is decided to be a call, otherwise it is considered as signaling traffic.

The other approach for detecting a Skype call is based on the detection of the traffic generated
by the tear-down phase. In this case the system counts the number of 19 bytes long packets, for
which #; —t;_1 <3s. If such number exceeds a given threshold and the mean packet dimension
€[10, 600] bytes, the traffic flow is decided to be a Skype flow.

Moreover, if the following conditions are respected:

e number of packets is greater than 6
e mean packet dimension € [100, 600] bytes
e total number of bytes belonging to the flow is greater than 40 kbytes

then the flow is decided to be a call, otherwise it is considered as signaling traffic. It is to be
noted that, in this case, the reception of a packet, whose dimension is greater than 150 bytes,
resets the counter. This is justified by the fact that we should not observe data packets in the call
tear-down phase.

After having detected a Skype flow, the system gives a score to the flow, indicating how much
the detection is reliable (see Table I).

It is to be noted that, in general, we always consider the detection of an UDP call more reliable
than the detection of a TCP call. This is due to the fact that, while for UDP traffic we are able to
verify some signatures, for TCP traffic the encryption mechanism does not allow us to check for
any standard pattern in the packets. Moreover, we assume that we are sure of the detection results
if the system detects either a Skype Login Server Connection or a HTTP Update, since in that
case the involved user is surely using Skype.

5. EXPERIMENTAL RESULTS

To verify the effectiveness of our algorithm, we compare it with standard statistical classifiers and
the state-of-the-art Skype classifier originally proposed in [7] (the latter has been downloaded from
the authors’ web site).

To this aim, we have tested the system both offline and online (real time). Regarding the offline
testing, we have used three distinct data sets. The first one is represented by the DARPA data set
[16], a collection of publicly available traffic traces, realized by the MIT Lincoln Laboratory on
Information Systems Technology. This traffic is representative of a small LAN of the US force
directly connected to the Internet. In this data set, realized in 1999, there obviously does not appear
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any Skype traffic. It is to be noted that we have used this data set, although being clearly old
and simplistic, only because being publicly available it can be easily downloaded by everyone
to verify the results. The second data set [17] is composed of the traffic traces used in [7] and
only contains standard Skype calls and SkypeOut calls. Finally, the third data set (around 3 GB of
traffic data—in libpcap format) has been realized partly over a laboratory LAN in our Dept., and
partly over a small LAN connected to the Internet through an ADSL link. In this way, our data
are representative of the types of traffic generated in a research lab as well as by home users. In
more detail, the third data set contains, among the others, the following applications (2000 flows
per application):

eMule (both over TCP and UDP)
Bittorrent (both over TCP and UDP)
FTP

HTTP/HTTPS

MSN (both chats and calls)

SNMP

Skype (both over TCP and UDP).

Instead, for the online testing, we have installed the system over the gateway of our laboratory
LAN.

As far as Skype traffic is concerned, we have considered traffic between two end hosts running
SCs (including voice calls, chats and file transfers) as well as calls to traditional PSTN phones
(SkypeOut calls). For the sake of generality, we used SCs running under Linux (versions 1.4, 2.0,
and 2.1) as well as under Windows (versions 3.2, 3.6, 4.0, and 4.1).

The goal of our algorithm is to correctly identify Skype flows, hence as performance metrics
we have considered the percentage of False Positives (FP) and False Negatives (FN). Since the
lengths of the analyzed flows are quite different, these quantities have been estimated on a per-flow
and on a per-byte basis, in order to have an insight not only into the number of flows incorrectly
classified, but also into the involved amount of traffic.

As far as ‘general purpose’ statistical classifiers are concerned, we implemented the following
algorithms [18] that are the most widely used ones:

Naive Bayes Classifier (NB)

Linear Discriminant Analysis (LDA)
k-Nearest Neighbor (k-NN)

Support Vector Machine (SVM).

The parameters of the classifiers have been tuned during an appropriate training phase that has
been performed using one half of the traffic traces (the remaining ones have been used for the
classification).

At first the TCP data have been processed by TStat [19] that calculates a set of significant
features for each connection, while for the UDP traffic we have started by extracting all the
‘reasonable’ features. Then, in order to squeeze the most out of these classifiers, we have applied
the Whitney method [18] to extract the ‘best’ features, and then we have normalized them, so as
to obtain homogeneous values. Finally, by means of a cross-validation process we have limited
the number of useful features to 31 for TCP traffic and 12 for UDP traffic (see Tables II and III,
respectively).

Regarding the first data set (DARPA), the system has achieved a ‘correct’ behavior. Indeed it
has not revealed any Skype flow. As far as the second data set is concerned the obtained results
are presented in Table IV.

As we can see from the table, the system performs better over TCP traffic than over UDP traffic.
In any case the percentage of non-detected bytes is always very low, even when the percentage
of non-detected flow seems to be not negligible. This means that our system does not always
correctly reveal some short flows, which correspond to signaling traffic, while the data traffic is
almost always correctly detected.
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Table II. TCP features.

number of client packets

0 if there are not RST segments from client, 1 otherwise
number of ACKs sent by client

number of pure ACKs sent by client

number of bytes sent by client

number of SYNs sent by client

number of FINs sent by client

window scale option (client packet)

timestamps option (client packet)

number of SACKs sent by client

average client RTT (ms)

minimum client RTT (ms)

maximum client RTT (ms)

client RTT standard deviation

number of server packets

0 if there are not RST segments from server, 1 otherwise
number of ACKs sent by server

number of pure ACKs sent by server

number of bytes sent by server

number of SYNs sent by server

number of FINs sent by server

window scale option (server packet)

timestamps option (server packet)

number of SACKs sent by server

average server RTT (ms)

minimum server RTT (ms)

maximum server RTT (ms)

server RTT standard deviation

flow duration

time between the first flow segment and the first data segment
time between the first flow segment and the last data segment
time between the first flow segment and the first client packet
time between the first flow segment and the first server packet

Table III. UDP features.

number of packets per flow

flow packet size variance

client packet size average

client packet size variance

server packet size average

server packet size variance

ratio between the number of server and client packets
ratio between the number of server and client bytes
minimum packet dimension

maximum packet dimension

minimum inter-arrival time (client)

number of byte sent by the client

The results, obtained over the third data set, are summarized in Tables V and VI for UDP and
TCP flows, respectively.

The previous results highlight that our algorithm outperforms both the general-purpose statistical
approaches and Skype classifier [7]. The high value of FN at flow level for TCP traffic is due
to the fact that up-to-date features characterizing such exchanges of data between SCs have not
been identified yet. Nevertheless, it is important to highlight that, as in the previous case, the
unclassified flows correspond to a very low quantity of traffic (bytes), which means that the system
is not classifying the signaling traffic, while the calls are correctly classified.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2012; 25:386-403

DOI: 10.1002/dac



400 D. ADAMI ET AL.

Table IV. Second data set.

SkypeOut (UDP) Skype and SkypeOut Calls (TCP)

FN (Flows) % 12.79 5.56
FN (Bytes) % 0.14 1.86

Table V. Third data set: UDP flows.

Our algorithm Skype classifier NB LDA k-NN SVM

FN (Flows) % 4.8 97.57 11.69 9.44 1.9 2.01
FN (Bytes) % 0.06 26.32 95.98 95.98 6.86 7.88
FP (Flows) % 0 2.4 11.83 13.74 10.95 14.94
FP (Bytes) % 0 16.85 6.12 7.27 5.33 17.47

Table VI. Third data set: TCP flows.

Our algorithm  Skype classifier NB LDA k-NN  SVM

FN (Flows) % 27.46 84.95 28.41  20.04 2459 24.44
FN (Bytes) % 0.64 56.38 33.07 1445 27.01 39.48
FP (Flows) % 0.01 9.68 4.49 6.95 5.08 3.37
FP (Bytes) % 0.001 94.58 7.27 2.48 0.56 0.11

Table VII. Real-time classification.

Skype event Mean detection time
UDP Call 14s

UDP Call with relay 1.5s

TCP Call End of the call
TCP Call with relay 18.7s

UDP File Transfer 1.2s

UDP File Transfer with relay 1.2s

TCP File Transfer End of the file transfer
TCP File Transfer with relay 19.3s

It is also important to highlight that the same consideration also holds for the Skype classifier,
indeed this classifier is not aimed at detecting the Skype signaling traffic. This consideration
explains the big quantity of false alarms generated by the classifier.

Finally, concerning the real-time classification, since all the LAN users were monitored, we can
state that the system has correctly classified all the Skype traffic (both signaling and data traffic),
without any FP. Table VII shows the mean detection times for the online detection of the different
Skype activities.

From the table we can easily note that the standard calls are detected quite immediately, while
more time is necessary for detecting the TCP calls with relay node. Indeed, in this case, the system
has to wait for a significant number of TCP Ping. Finally, for the direct TCP calls, since it is
impossible to observe the TCP Ping messages, it is necessary to wait for the call tear-down phase.

As a general consideration, we can easily note that our method is able to achieve very good perfor-
mance, outperforming all the classical classification algorithms as well as the ‘Skype classifier’.
Regarding the first ones, the main improvement is given by the fact that our algorithm combines
statistical and signature-based approaches. Indeed, given that Skype behavior is ‘statistically’ analo-
gous to other P2P systems, the use of the signatures allows to significantly improve the performance
achieved by statistical classifiers. Moreover, in comparison with the latter, as already said, another
great advantage of our approach is given by the fact that it is also able to detect the signaling
traffic, that cannot be detected by the ‘Skype classifier’.
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Finally, we have measured the memory and CPU consumption of the algorithm. The tests have
been realized by using the proposed system over a standard PC (Intel Pentium 4 2.5 GHz, 1 GB
RAM), connected to the mirroring port of the LAN switch. The results have shown that, even
when the network becomes congested, the memory usage is less than 1%, while 60% of the CPU
has been used at maximum (comprising the resources allocated to the OS).

6. CONCLUSIONS

In this paper we have proposed a real-time algorithm to detect and classify Skype traffic. In more
detail, the presented method, by means of both signature-based and statistical procedures, is able to
correctly reveal and classify the signaling traffic as well as the data traffic (calls and file transfers).

The performance analysis has shown that our algorithm achieves very good results over several
types of traffic traces, representative of different access networks. Moreover, we have shown that
our system outperforms the ‘classical’ statistical traffic classifiers as well as the state-of-the-art
ad hoc Skype classifier.
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