
Revealing Skype Traffic:
When Randomness Plays with You

Dario Bonfiglio
Politecnico di Torino

Dipartimento di Elettronica
dario.bonfiglio@polito.it

Marco Mellia
Politecnico di Torino

Dipartimento di Elettronica
marco.mellia@polito.it

Michela Meo
Politecnico di Torino

Dipartimento di Elettronica
michela.meo@polito.it

Dario Rossi
ENST Télécom Paris

Informatique et Réseaux
dario.rossi@enst.fr

Paolo Tofanelli
Motorola Inc.
Torino - Italy

fnkb76@motorola.com

ABSTRACT
Skype is a very popular VoIP software which has recently attracted
the attention of the research community and network operators.
Following a closed source and proprietary design, Skype proto-
cols and algorithms are unknown. Moreover, strong encryption
mechanisms are adopted by Skype, making it very difficult to even
glimpse its presence from a traffic aggregate. In this paper, we
propose a framework based on two complementary techniques to
reveal Skype traffic in real time. The first approach, based on Pear-
son’s Chi-Square test and agnostic to VoIP-related traffic character-
istics, is used to detect Skype’s fingerprint from the packet framing
structure, exploiting the randomness introduced at the bit level by
the encryption process. Conversely, the second approach is based
on a stochastic characterization of Skype traffic in terms of packet
arrival rate and packet length, which are used as features of a deci-
sion process based on Naive Bayesian Classifiers.

In order to assess the effectiveness of the above techniques, we
develop an off-line cross-checking heuristic based on deep-packet
inspection and flow correlation, which is interesting per se. This
heuristic allows us to quantify the amount of false negatives and
false positives gathered by means of the two proposed approaches:
results obtained from measurements in different networks show
that the technique is very effective in identifying Skype traffic.

While both Bayesian classifier and packet inspection techniques
are commonly used, the idea of leveraging on randomness to reveal
traffic is novel. We adopt this to identify Skype traffic, but the
same methodology can be applied to other classification problems
as well.

Categories and Subject Descriptors
C.4 [Computer Communication]: Measurement Techniques; C.2.5
[Computer Communication Network]: Internet

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’07, August 27–31, 2007, Kyoto, Japan.
Copyright 2007 ACM 978-1-59593-713-1/07/0008 ...$5.00.

General Terms
Experimentation, Measurement

Keywords
Traffic Identification, Passive Measurement, Naı̈ve Bayesian Clas-
sification, Pearson Chi-Square Test, Deep Packet Inspection

1. INTRODUCTION
The last few years witnessed VoIP telephony gaining a tremen-

dous popularity, as also testified by the increasing number of op-
erators that are offering VoIP-based phone services to residential
users. Skype [1] is beyond doubt the most amazing example of this
new phenomenon: developed in 2003 by the creators of KaZaa, it
recently reached over 100 millions of users, becoming so popular
that people indicate Skype IDs in their visiting cards.

A number of reasons for such a success can be acknowledged.
First, today Internet (in terms of capacity, responsiveness, robust-
ness) makes it possible to provide new and demanding services,
including real-time interactive applications such as telephony. Sec-
ond, the users attitude toward technology has deeply changed in
the last few years: users are willing to accept a good service for
free, even though service continuity and quality is not guaranteed;
they (we?) like to have access from the same terminal and even the
same application environment to a number of different communi-
cation facilities; new ways and tools to be connected to each other
are easily accepted and experienced by people. Last but not least,
Skype is an extremely good piece of software, carefully engineered,
user friendly and efficient at the same time.

The importance of Skype traffic identification –besides being in-
strumental to traffic analysis and characterization for network de-
sign and provisioning– is clear when considering the interest of
network operators, ranging from traffic and performance monitor-
ing, to the design of tariff policies and traffic differentiation strate-
gies. To date however, despite the interest recently exhibited by
the research community, reliable identification of Skype traffic re-
mains a challenging task, given that the software is proprietary and
the traffic is obfuscated. The objective of this paper is to define a
framework, based on two different and complementary techniques,
for revealing and classifying Skype traffic from a traffic aggregate,
irrespectively of the transport layer protocol that is being used (i.e.,
TCP or UDP). Both techniques are scalable, can be performed on-
line, and are applicable to a more general extent than the context
of Skype traffic identification. The first approach, based on Pear-

37

son’s Chi Square test, is used to detect Skype’s fingerprint from the
packet framing structure but is agnostic to VoIP-related traffic char-
acteristics. To the best of our knowledge, this work is the first to in-
troduce this methodology for the purpose of traffic identification: in
the following, we refer to this novel identification approach as Chi-
Square Classifier (CSC). Conversely, the second approach is based
on a stochastic characterization of Skype traffic in terms of packet
arrival rate and packet length, which are employed as features of a
decision process based on Naive Bayesian Classifiers (NBC): how-
ever, while the above features successfully allow to identify VoIP
traffic, they are not representative of the application that generated
it.

To proof-check the correctness of the statistical techniques, we
develop a Payload Based Classifier (PBC), that relies on tradi-
tional technique of deep-packet inspection, combined with a per-
host analysis that allows us to identify Skype clients and their gen-
erated traffic. We use the PBC to cross-check the results obtained
from the statistical approaches. In particular, from the controlled
testbed experiments and from real traffic traces as well, the PBC
is used to create a benchmark dataset in which we classify Skype
flows with a very high confidence level. Moreover, the benchmark
dataset is used to tune parameters of the above classifiers, as well
as to quantify the number of NBC/CSC false-positives and false-
negatives. Indeed, by running the NBC and CSC onto the bench-
mark dataset, we can assess the effectiveness of the two classifiers,
when they are either separately or jointly used. We anticipate that
the combination of NBC and CSC yields to astonishingly good re-
sults. The joint NBC+CSC classification method effectively limits
the number of false positives, yielding to conservative results, in the
sense that the number of non-Skype flows erroneously classified as
such is negligible.

A mythological analogy fits to the above framework if we per-
sonify the problem of Skype traffic identification with Khaos, which
typically refers to unpredictability and in Greek mythology [2] was
referred to as the primeval state of existence, from which the pro-
togenoi (i.e., the first gods) appeared. The payload based heuristic
allows us to bring light to the problem solution, and it can thus
be represented by Hemera, the female goddess of eagles and fat-
heads and the personification of day. Opposite to the deep-packet
inspection, the statistical techniques lye. We can identify with
Nyx, the primordial goddess of the night, and Erebos, the person-
ification of darkness and shadow, respectively the Chi-Square test
and Bayesian classification. A tight relationship exists among the
techniques, exactly as it exists among the protogenoi: Hemera is
the daughter of Nyx and Erebos, which are one other’s sister and
brother, and are sons of Khaos in their turn. Hemera, Nyx and Ere-
bos are used to reveal and understand Khaos, i.e., Skype traffic.

2. RELATED WORK
As the use of Skype spreads and increases in importance, there

is the need for tools and techniques to analyze Skype traffic, which
recently drawn much interest of the research community [3, 4, 5,
6, 7], as briefly overviewed in what follows.

In [3], authors provide an overview of Skype design and func-
tions, exploring many Skype aspects under different network se-
tups: both Skype users with machines with public IP addresses,
or one of them behind port-restricted NAT, or, finally, both users
behind a port-restricted NAT and UDP-restricted firewall. Authors
of [4], of which unfortunately only the slides from an oral presenta-
tion are available, provide a very deep understanding of Skype in-
ternals, including many details gathered from a reverse engineering
of Skype protocol and application, with a special focus on security
issues. The format of low level datagram is inspected: it emerges

that almost everything is cyphered, that data can be fragmented,
and that an extensive use of data compression (based on arithmetic
compression) is made as well. The work in [5] presents an ex-
perimental study of Skype, where results are collected by means
of measurements over a five months period. Authors analyze user
behavior only for relayed 1, rather than direct, sessions. Results
pertain the population of on-line clients and their usage pattern, the
number of super-nodes and bandwidth usage: thus, the identifica-
tion problem is no longer related to Skype traffic but, rather, to
Skype users.

The works closest to ours are [6, 7]. [6] deals with the evalua-
tion of the QoS level provided by Skype calls. However, the paper
focus is more on the QoS evaluation rather than on the identifica-
tion of the flows. Specifically, authors consider a valid VoIP ses-
sion whenever i) flow duration is longer than a threshold (namely,
10 seconds), ii) average packet rate is within a reasonable range
(between 10 and 100 pkt/sec), iii) average packet size is small (be-
tween 30 and 300 bytes), and iv) Exponentially Weighted Moving-
Average of the packet size falls in a given range (between 35 and
500 bytes) for the whole flow duration. However, these charac-
teristics are typical of all VoIP traffic, and not only of Skype traf-
fic. Therefore, authors propose a complex algorithm to identify the
UDP port used by Skype. All traffic originated from, sinked by that
(IP address - UDP port) will be labeled as Skype traffic. Besides
being very complex, this approach applies only when Skype uses
UDP at the transport layer and it needs the Skype login phase to be
monitored: it is, thus, likely to fail on backbone links. Moreover,
any modification during the login phase in future Skype releases
will make the algorithm useless. We, on the contrary, would like
to pin out all VoIP traffic generated by Skype only, possibly with
simple algorithms and in any scenario. Finally, in [7] authors focus
on the identification of relayed traffic, and present an application
to Skype. The adopted approach is to correlate, at the relay node,
the incoming and outgoing packet time series and bandwidth usage.
More on details, authors focus on what they call “burst” of traffic.
Then, for every pair of packet bursts, an analysis of the correlation
of the packet arrival series within the burst is performed. While
this technique has been proved to be reliable in identifying relayed
Skype sessions, we point out that it is not suitable to our purpose,
i.e., identifying all Skype VoIP traffic.

To summarize, the above works focus on either the analysis of
Skype internals (gained by both black box approaches and reverse
engineering), or the characterization of different aspects of the Skype
users and traffic (in which case only fairly simple identification
heuristics are used), or on methodologies to identify Skype relayed
traffic. Therefore, we feel that the problem of identification of
Skype direct sessions, which is the aim of this paper, has not been
accorded the attention that it deserves. We reach our goals using
algorithms that work in real-time, are very reliable, and can detect
Skype voice flows that last few seconds only.

3. THE SKYPE SOURCE MODEL -
KHAOS MODEL

In this section, we combine the knowledge gained by the work
overviewed in Sec. 2 with an original study of the traffic gener-
ated by a Skype client: the aim is to both derive a model of Skype
traffic sources, and gain insights that allow us to build our effec-
tive identification method. In order to derive a traffic source model,
we performed several experiments in a controlled environment: our

1A session is relayed if packets from a source to a destination are
routed through an intermediate node which acts as an application
layer relay.

38

CODEC
Block(i)

H1

FRAMER

Rate ΔT

SoM

RF

M

U

X

ARCHIVER

CYPHER

VOICE

Block(i-1)

H2

Report

Hn

IM Block

Hm

Data Block

Hk

Block(j)

Hj

Block(j-1)

Hj+1

...
...

CODEC
VIDEO

DATA
TRANSFER

MESSAGING
INSTANT

Figure 1: Schematic diagram representing the Skype message
building process.

testbed involved several PCs connected by a Linux NAT / Firewall /
Router / Traffic-Analyzer box. Different versions of Skype were
installed, running under different operating systems such as Win-
dows, Linux and Pocket-PC. Different network scenarios were tested,
either emulated by using NIST Net [8] to enforce several combina-
tions of delay and packet losses, or using different access networks
(e.g., Ethernet, xDSL, UMTS access data-link).

Skype offers VoIP capabilities in two different “modes”. In the
first one, traffic is generated between two end-hosts, each of which
is running a Skype client: we call End-to-End (E2E) the generated
traffic. The second communication mode happens between an end-
host and a traditional PSTN phone, involved through the Skype-
out/Skypein services: in this case, we call End-to-Out (E2O) the
generated traffic. Moreover, we anticipate that we seek to derive
a quite general and tunable model that, instead of being precisely
but rigidly fitted to our testbed measurements, can adapt to future
software releases.

3.1 The Skype Source Model
A schematic diagram of the Skype source model is reported in

Fig. 1. Since Skype supports voice, video, chat and data transfer,
several information sources are highlighted. Each source has dif-
ferent characteristics, but all generate information blocks that are
then multiplexed in a frame.

Considering the voice source, the voice encoder used during a
call, i.e., the Voice Codec, outputs blocks of encoded voice. Since
our focus is on voice calls, in the following we denote the voice
encoder simply as the Codec. The Framer is then responsible for
creating Skype frames, by multiplexing into a single frame one or
more blocks (e.g., to cope with the potential loss of the immedi-
ately preceding frames, or to modify the message generation rate).
Possible video/data/chat/report blocks can be multiplexed as well
in a single frame and some additional headers, named H1, H2, . . .
in the figure, can be added. Once a frame has been created, it is
then arithmetically compressed by the Archiver and encrypted by
the Cypher. Finally, an additional non-cyphered header may be
present, denoted by Start of Message (SoM) in the figure. The
SoM will play a crucial role in the PBC, and we discuss it deeply in
Sec. 3.2.1. The output of the process depicted in Fig. 1 is a Skype

Codec Frame Size [ms] Bitrate [Kbps]
ISAC 30,60 10 ÷ 32
ILBC 20,30 13.3, 15.2
G.729 10 8
iPCM-wb 10,20,30,40 80 (mean)
EG.711A/U 10,20,30,40 48,56,64
PCM A/U 10,20,30,40 64

Table 1: Nominal Characteristics of Skype Codecs.

message, that will be then encapsulated in either a UDP or TCP
segment.

At the input side, three parameters have a crucial role in deter-
mining the characteristics of the generated traffic: i) Rate is the
bitrate used by the source, i.e., the Codec rate. ii) ΔT , that repre-
sents the Skype message framing time, is the time elapsed between
two subsequent Skype messages belonging to the same flow. iii)
RF is the Redundancy Factor, i.e., the number of past blocks that
Skype retransmits, independently from the adopted Codec, along
with the current block.

All parameters may change during the connection lifetime, de-
pending on the network working conditions. As an example, Fig. 2
reports a message trace observed during a voice call between two
clients in which we artificially enforced the available bandwidth.
Top plot reports the average bitrate evaluated every second and
the imposed bandwidth limit; middle plot reports ΔT , and bottom
plot reports the packet size versus time. Looking at the message
size, the effects of both variable-bitrate Codec and the Framer are
clearly visible. Indeed, at the connection beginning (time [0:30]s),
messages are approximately double the size of the messages in the
second part of the call (time [40:150]s). In the last portion of the
connection, a change in the message size pattern is probably due to
a change of the Codec bitrate. By looking at ΔT , it is possible to
observe that the average message framing takes values of 20, 30 or
60 ms.

In our experiments, we observed many different operating points,
where an operating point is defined as (Rate,ΔT, RF) tuple. In
particular, we observed RF between 1 and 4, and ΔT varying be-
tween 0.5 and 6 times the actual Codec framing time. Despite we
did not observe all the possible combinations of the three parame-
ters, we cannot exclude that other network conditions could lead to
Skype selecting other operating points: therefore, we adopt a con-
servative approach and prefer a slightly more general model that
takes into account such possibilities as well.

For completeness, Tab. 1 reports the details about the different
Codecs supported by Skype2: the Codec name, nominal frame size
and bitrate are reported. All Codecs are standard except the ISAC
one, which is a proprietary solution of GlobalIPSound [9]. ISAC
is the preferred Codec for E2E (End-to-end) calls, while the G.729
Codec is preferred for E2O (Skypeout) calls.

3.2 More on Skype Messages

3.2.1 The Start of Message (SoM)
According to [10], Skype uses state-of-the-art AES and RSA al-

gorithms to cypher messages. However, the choice of the trans-
port layer protocol has an important implication. TCP implements

2Codec are automatically selected. However, it is possible to
force Codec selection enclosing the list of disabled Codecs be-
tween the tag <DisableCodecs> <\DisableCodecs> in
the config.xml file.

39

 0

 20

 40

 60

 80

 100
[K

bp
s]

Average Throughput
Bandwidth limit

 0

 20

 40

 60

 80

 100

[m
s]

ΔT

 0
 50

 100
 150
 200
 250
 300

 0 30 60 90 120 150 180 210 240 270 300

[B
yt

es
]

Time [s]

Skype Message Size

Figure 2: Sample trace: Skype message size, framing and aver-
age bitrate during a voice call.

a connection-oriented reliable transport and the application is guar-
anteed to receive all data segments in the correct sequence. When
using TCP, Skype therefore cyphers the whole content of all mes-
sages. Conversely, the connectionless unreliable service offered by
UDP no longer guarantees in-sequence and all data delivery. There-
fore, when using UDP, Skype receiver must extract from the appli-
cation layer header some additional information to detect and deal
with possible incorrect stream lining. Such information cannot be
protected by means of a stream cypher, but can only be obfuscated
by means of some function based on single packet payload [4].
Thus, with UDP, Skype cannot encrypt the whole message. More-
over, Skype sends and receives UDP segments using a fixed port
to avoid additional signaling needed to negotiate a dynamic port.
Therefore some application layer headers must be added to mul-
tiplex different messages into the same transport flow (e.g., voice,
instant messaging, file transfer and signaling messages between the
same two end-points). Based on the two previous deductions, we
conclude that, when Skype messages are encapsulated in UDP seg-
ments, a portion of the Skype messages can be identified by in-
specting the UDP payload: this is what we call the Start of Message
(SoM).

3.2.2 End-to-end Messages
By looking at the UDP encapsulated messages generated be-

tween two Skype clients, i.e., E2E messages, the following fields
are identified:

• ID: a 16-bit long identifier (byte 1 and byte 2) used to uniquely
identify the message; it is randomly selected by the sender
query, and copied in the receiver reply.

• Fun: a 5-bit long field obfuscated into a byte (byte 3) stat-
ing the payload type. Three random bits can be removed by
considering a 0x8f bitmask.

• Frame: containing a possibly multiplexed sequence of cyphered
information and voice blocks.

The ID and Fun fields are part of the SoM header. By inspecting
the values assumed by the Fun field, we have that 0x02, 0x03,
0x07 and 0x0f are used to indicate signaling messages generated
during Skype login phase, or connection management. 0x0d indi-
cates a DATA message, that can contain: i) encoded voice blocks,
ii) video encoded blocks, iii) chat messages or even iv) chunks of

files transferred by users during a Skype session. We never ob-
served other values being assumed by the Fun field.

3.2.3 Skypeout Messages
Skypeout calls have an initial signaling phase between the client

and some super-nodes. Then, a voice encoded stream of messages
is activated among the caller and a gateway node, which converts
the call to the PSTN. The UDP port value of the PSTN gateway
is set to 12340, while its IP address may change according to the
selected gateway. Looking at the payload of the UDP encapsulated
voice messages, we notice that after a variable number of initial
messages, the first four bytes take always the same value, therefore
hinting to a different SoM format than E2E messages: we assume
that these four bytes are used by the PSTN gateway as a unique
Connection IDentifier (CID). Note that it is possible for the CID
to change during the connection lifetime, and our testbed showed
that it is very likely for such changes to happen during connection
start. Bytes from 5 to the end of the message show no deterministic
meaning.

3.3 Khaos: How to proceed with Skype traffic
identification

In the following, we exploit the above information to classify
Skype traffic. In particular, we propose three classifiers that exploit
different aspects and characteristics of Skype traffic.

Nyx, the first classifier referred to as Chi-Square Classifier (CSC)
in the following, focuses on the cyphering mechanisms: the CSC
decision is based on the analysis of the message content random-
ness introduced by the cypher. When TCP is employed at the trans-
port layer, the whole content of a Skype message is encrypted, so
that message bytes appear to be randomly distributed. Conversely,
in the UDP case, only a certain portion of the message carries ran-
domly distributed values, whereas other portions of the messages
(e.g., the Fun and ID fields for E2E and the CID for E2O calls)
exhibit statistical properties typical of deterministic data. The CSC
allows us to distinguish the traffic generated by Skype clients from
the one of other VoIP sources since they use different header for-
mat, e.g., RTP. In the case of UDP, it provides some additional
information on the Skype mode (E2E or E2O).

Erebos, the second classifier, referred to as Naive Bayes Classi-
fier (NBC) in the following, is based instead on the peculiar prop-
erties of the traffic generated by the voice Codec and the framer.
Specifically, we characterize the stochastic properties of the traffic
generated by the source in terms of packet length and inter-packet
gap. Then, we define a classifier whose decision process is based on
the quantitative evaluation, by means of a Bayesian technique, of
the resemblance of potential Skype flows to the expected stochastic
characteristics.

Hemera, the third classifier referred to as Payload-Based Clas-
sifier (PBC) in the following, is based on a more traditional ap-
proach of deep packet inspection, and, in particular, it leverages
on the SoM header content. This classifier applies only to flows
transported by UDP and couples the per-flow inspection of packet
content with more sophisticated per-host state information (such as
the port used for the data exchange, or traces of previous Skype
activities by the same host), so as to reduce the number of misiden-
tification.

4. THE CLASSIFIERS

4.1 Nyx: Chi-Square Classifier
The first classifier we present uses the Pearson’s Chi-Square sta-

tistical test to assess whether and which message portions are en-

40

crypted. The aim of this test is to check if the message under
analysis complies with one of the Skype message formats early de-
scribed, and can thus be considered an analogous of forensic meth-
ods to reveal fingerprints. More on details, depending on the kind of
flow, we can expect different characteristics of the message content
after cyphering. In particular, we distinguish the following cases:

• E2E Skype flow transported by UDP.
The FUN bits are deterministic, while all the other bits in
the message are cyphered. By assuming that the cypher is
optimally working, we can expect cyphered bits to appear
completely random, i.e., uniformly distributed.

• E2O Skype flow transported by UDP.
The first four bytes of the message are deterministic, since
they represent the CID. Besides these four bytes, the remain-
ing part of the message is cyphered and the corresponding
bits appear to be random.

• Skype flow transported by TCP.
The whole message is cyphered, irrespectively of the E2E/E2O
Skype mode: therefore, the whole message appears to be ran-
dom.

In order to classify if a flow is generated by Skype, we use the
above observation to test whether the message content is compliant
with our expectation by means of Pearson’s Chi-Square test. The
test is designed to verify whether the behavior of an object, ob-
served for a finite number of times, follows an expected behavior:
this is done by computing the deviation of the observed output val-
ues with respect to the expected distribution of the outputs. Assume
that we build an experiment over the object by observing its output
for nTOT times (with nTOT large) and assume that there are n
possible outputs for each observation. If the expected distribution
of the output is such that output value i, with i = 0, . . . , n − 1,
occurs with probability pi, the expected number of occurrences of
i is Ei = nTOT pi. Now, let Oi be the number of occurrences of i
actually observed during the whole experiment. The value

χ2 =
n−1X
i=0

(Oi − Ei)
2

Ei
(1)

is a measurement of the deviation of the observed behavior with
respect to the expected behavior. If the observed object really be-
haves as expected, then the χ2 value computed in (1) is distributed
according to a Chi-Square distribution with n − 1 degrees of free-
dom, the deviation being simply due to the finite nature of the ex-
periment.

The test is often employed for a single experiment in the fol-
lowing way. Make the hypothesis that the output of the object is
distributed according to probabilities pi’s and perform the exper-
iment as described above. The hypothesis is rejected with signif-
icance level α if the value χ2 computed as in (1) is larger than
the (1 − α)−th quantile of the Chi-Square distribution with n − 1
degrees of freedom. We build our CSC on this idea, by checking
whether the content of the messages belonging to a given flow com-
plies with one of the different random/deterministic Skype traffic
behavior described above.

Our experiment works as follows. For each message belonging
to a flow, we consider the first G groups of b bits (i.e., we consider
the first Gb bits of the message) and we compute, for each block
g = 1, . . . G, the variables Og

i which count the number of times
that the g-th block assumed value i, with i = 0, . . . , 2b − 1. At the

Skype Mode SoM Payload
Byte pos. 1–2 3 4 5-...
E2E over UDP Rnd Mixed Rnd Rnd
E2O over UDP Det Det Det Rnd
E2E-E2O over TCP Rnd Rnd Rnd Rnd

Table 2: Message content characteristics.

flow end, we evaluate the Chi-Square test for each group of bits,

χ2
g =

2b−1X
i=0

(Og
i − Ei)

2

Ei
with g = 1, . . . G. (2)

We have then to test whether the values of χ2
g are such that our hy-

pothesis is verified. For the hypothesis, we use the message content
characteristics early discussed and summarized in Table 2: we ex-
pect, depending on the kind of flow and the transport layer protocol,
parts of the Skype messages to be random and parts to be determin-
istic (or almost deterministic). For example, E2E flows over UDP
have the first, second and fourth bytes cyphered, or random (’Rnd’
in the table), while byte 3 contains a few random bits and some
constant bits (this case is labeled ’Mixed’ in the table). The whole
SoM of the E2O flows over UDP are deterministic (’Det’ in the ta-
ble), while messages are completely random for flows transported
by TCP.

In order to check if group g is random, deterministic or mixed,
we consider, as expected behavior, the Chi-Square distribution ob-
tained for uniformly distributed bits. In this case, Ei = nTOT /2b

for all i, where nTOT is the number of messages belonging to
the flow. We then compare the measured values of χ2

g with some
thresholds derived from the distribution of the Chi-Square with
n − 1 = 2b − 1 degrees of freedom; we denote the thresholds
by χ2(Rnd), χ2(Mixed), and χ2(Det).

Different criteria can be proposed based on the value of G and b,
and the thresholds. Our choice is b = 4 bits, and G = 16, meaning
that the first 8 bytes (half of which account for the SoM header
and half for the payload) are considered. The reference Chi-Square
distribution in this case has 2b − 1 = 15 degrees of freedom and
Ei = nTOT /16 for all i = 0, . . . , 15. We then classify the flow
according to the following criteria.

• E2E over UDP.

max
g∈G′(χ

2
g) < χ2(Rnd) ∧ min

g∈{5,6}
(χ2

g) > χ2(Mixed)

where G′ = {g | 1 ≤ g ≤ G, g �= 5, 6} is the set of
groups corresponding to the random part of the E2E mes-
sage. The rationale of this criterion is that random blocks
should be “similar” to the uniform distribution leading to rel-
atively small values of χ2

g . At the same time, mixed blocks
that contain a few deterministic bits, tend to have larger val-
ues of χ2

g , because they significantly deviate from the typical
random behavior.

• E2O over UDP.

min
g=1,...,8

(χ2
g) > χ2(Det) ∧ max

g=9,...,16
(χ2

g) < χ2(Rnd)

In this case, the SoM (i.e., the first four bytes, or eight groups
of b = 4 bits) should be deterministic, whereas the remaining
portion random.

41

 1

 10

 100

 1000

 10000

 100000

 1e+06

 100 1000 10000 100000 1e+06

χ2

nTOT [pkt]

Deterministic group
Random group

Mixed group

Figure 3: χ2
g versus the number of observations for determin-

istic, random and mixed (1 deterministic and 3 random bits)
groups.

• E2E or E2O over TCP.

max
g=1,...,16

(χ2
g) < χ2(Rnd)

All considered groups should be random.

• Not Skype.

Otherwise.

Notice that the Chi-Square test works if the number of observa-
tions nTOT is large, say that nTOT is such that Ei ≥ 5 for all
possible i. In our case, this means that we can apply the test only
to flows whose number of messages is,

nTOT

2b
≥ 5 (3)

that is nTOT ≥ 80 with our choice for b. In the numerical results
Section, we choose nTOT ≥ 100, which roughly corresponds to
3 s of a voice flow. The difference in the observed values of χ2

g

between a deterministic or a random block significantly increases
with the flow length. Indeed, for a deterministic block, since only
one value for the block is possible, the value of χ2

g is,

χ2
g =

2b−1X
i=0

(Og
i − Ek)2

Ei
(4)

=
(nTOT − E)2 +

`
2b − 1

´
E2

E
= nTOT

“
2b − 1

”
. (5)

χ2
g linearly increases with nTOT , meaning that the longer the flow

is, the more reliable the identification of a deterministic block is.
Reliability of the test increases also with b; however, due to the
implication expressed by (3), the value of b should be kept small.

Consider now the case of a mixed block. If one bit is fixed and
the others are random (as is the case of the fifth group of an E2E
flow transported by UDP), Oi = 0 for half the possible values of i,
and larger than 0 for the remaining i. Since the possible values of i
are 2b in total, the χ2

g of a mixed block is,

χ2
g =

2b−1X
i=1

(Og
i − E)2

E
+ 2b−1 E2

E

= 2χ2
2b−1−1 + nTOT (6)

where χ2
2b−1−1 is the Chi-Square with 2b−1 − 1 degrees of free-

dom; in other terms, it is a value that can be achieved from an
experiment with random bits over 2b−1 possible values. This re-
sult suggests that in the case of a group with 1 deterministic bit χ2

g

is again linearly increasing with nTOT . Similarly, it is possible to
estimate what has to be expected from the case of more than one
deterministic bit, as is the case of group 6 in a E2E flow over UDP.

Figure 3 reports the value of χ2
g for the considered kinds of

groups, computed over the flows that were identified as Skype flows
in the experiments described in Sec. 5. In particular, we se-
lected block 1 and 5 from E2E flows, and block 1 from E2O flows,
which are examples of random, mixed and deterministic blocks.
At flow end, the values of the corresponding χ2

g is then plotted
with x-axis value equal to the flow length. Notice the growth of
χ2

g with nTOT for both deterministic and mixed groups, with com-
pletely deterministic groups having a much larger deviation from
random behavior. The figure suggests that, as the behavior of the
three groups are clearly distinguishable from the value of the χ2

g ,
the setting of the thresholds is not critical. Thus, in order to reduce
the number of parameters, we simply set χ2(Det) = χ2(Rnd) =
χ2(Mixed) = 150.

4.2 Erebos: Naive Bayes Classifier
As mentioned before, while the CSC is based on the cypher, the

NBC proposed in this section makes use of the peculiar character-
istics of real-time voice traffic. The algorithm is based on a traffic
characterization that, combining the voice Codec with the framer,
provides a stochastic description of Skype traffic: resemblance of
the measured traffic to the Skype source is then evaluated by a coor-
dinated set of Naive Bayes Classifiers [11]. Naive Bayes Classifiers
are successfully adopted in the data-mining field, and, despite their
simplistic assumptions, are known to provide excellent results [11].
Recently they have also been adopted to classify Internet traffic,
showing very good performance, see [12] and references therein.

4.2.1 The Classifier
The Naive Bayes Classifier (NBC) technique derives from the

Bayes theorem and is based on the following idea. Suppose that we
observe an object that can be described by a number of observable
quantities called features. Many different features can be gathered.
Let vector x = [xi] represent the different samples, where xi is
the i−th observed value of feature X. Then, we are interested
in quantifying the probability P{C|x} that the object belongs to
class C, given that we observed the sequence x for feature X. The
NBC technique relies on the knowledge of the a-priori probability
P{x|C} to infer the a-posteriori probability P{C|x},

P{C|x} =
P{C,x}
P{x} =

P{C,x}
P{x}

P{C}
P{C} =

P{x|C}
P{x} P{C}.

(7)
NBC is based on the assumption that the xi’s are independent

(the attribute “naı̈ve” refers to this assumption), so that the follow-
ing holds:

P{x|C} =
Y

i

P{xi|C}. (8)

Often, instead of evaluating P{C|x}, one is interested in identi-
fying the likelihood of being of class C rather than other classes, so
that a maximum-likelihood criteria can be used. P{x|C} is often
referred to as belief in the literature: the larger the belief of a given
class is, the larger the probability of belonging to that class is.

42

4.2.2 Feature Selection
In order to properly select a small number of features that can

help in classifying Skype flows, we consider the main aspects in
which Skype traffic differentiates from typical Internet traffic. Given
the nature of real-time voice communication, a Skype client gener-
ates a low bit-rate flow which lasts for several tens of seconds and
is composed of several small messages, whose size depends on the
Codec rate and framing time ΔT . Data traffic, on the contrary,
tends to be much burstier, with large messages and possibly high
bit rates. Thus, we select as features:

• The message size, that is the length of the message encapsu-
lated into the transport layer protocol segment. In particular,
we consider a window of w messages and for each of them
we check the message size. Thus, we have:

x = [s1, s2, . . . , sw]

where si is the message size of the i-th packet of a window
of w consecutive packets. Being the message size strongly
dependent on the specific Codec, we develop a NBC for each
of the Codecs supported by Skype, see Tab. 1.

• The average-Inter Packet Gap (average-IPG), evaluated as
1/w times the time elapsed between the reception of the first
and the w-th packet in a window. In this case, we have a
single classifier that does not depend on the employed Codec:

y = [τ] = [(tw − t1)/w]

We define the belief of the message size and average-IPG features,
respectively denote by Bs and Bτ , in terms of sums of logarithms
instead of products as in (8), so as to limit numerical cancellation,
i.e., to avoid that observations with very low probability make the
belief go to 0.

Bs(C) =
1

w

wX
i=1

log P{si|C} Bτ (C) = log P{τ |C}. (9)

It is worth noticing that we chose the features as some aspects of
traffic characteristic over a short window of samples, so that the
effect of the high variability of traffic is smoothed. In particular,
we decided to consider the average-IPG value over a window of
packets rather than the instantaneous IPG values, in order to get
rid of the effects of access and queuing delays faced by packets.
Moreover, average-IPG, in the way we define it, is rather insensitive
to the specific point of the network in which the monitoring tool is
settled. For the choice of w we verified that, the impact of its value
is negligible as far as it is larger than 10. We therefore set w to 30,
that roughly corresponds to a time window of 1 s.

4.2.3 Feature Characterization
Let us first start by considering the message size feature. Based

on the Skype source model described in Sec. 3, we characterize the
message size distribution for each possible Codec using both nom-
inal parameters (e.g., Codec rates) and observations obtained from
test-bed experiments (e.g., to derive RF). In particular, a Codec
can be in different working points and we represent the message
size for a given working point by means of a Gaussian distribution
properly fitted to the measurements obtained in our test-bed. A
working point corresponds to different settings of the following pa-
rameters: i) Rate, ii) header length H , iii) redundancy factor RF ,
and iv) message framing time ΔT . For each combination of the
values {Rate,H, RF, ΔT}, the message size distribution is rep-
resented by a Gaussian distribution, N (μ, σ), with mean value set

w

x

y

ISAC

G.729

PCM

IPG

Max

Max

Max

Max

AVG

AVG

AVG

AVG

Max

Min

B

MaxB

w

(k,j)

(k+1)(k) w(k+2)

E[B]
(j)

 s

 s

E[B]τ

B

 s

B τ
(k)

CodecArgMaxD
E
M
U
X

Figure 4: Schematic diagram of the NBC.

to:

μ = (RateΔT + len(H))RF + len(SoM). (10)

The following values have been considered: Rate as in Tab. 1,
RF ∈ {1, 2, 3, 4}, len(SoM) = 4 Bytes, len(H) = 8 Bytes,
ΔT ∈ {10, 20, 30, 40, 50, 60} ms. For the setting of the stan-
dard deviation σ our fitting suggests to use σ = 1 for constant
bitrate Codecs, e.g., G729, and σ = 7.5 for the variable bitrate
Codecs, e.g., ISAC. A better fitting procedure could be used, but
since Skype internal details are unknown, it would be difficult to
actually include all possible cases.

For what concerns the average-IPG, it is modeled by a Gaussian
distribution with μ = ΔT and σ = 1, with no Codec specific
distinction.

4.2.4 Derivation of the Beliefs
Fig. 4 sketches the proposed classifier design, that combines two

sets of NBCs: some NBCs are jointly employed for the message
size, and a single NBC is used for the average-IPG.

Consider the message size. In the k-th measurement window,
a new value of the belief is evaluated for any Codec j (i.e., any
message size NBC), by choosing the maximum B

(k,j)
s (C) among

all the NBC beliefs (i.e., different working states of the j-th Codec):
let this maximum be denoted by B

(k,j)
s . Then, a sequence of beliefs

over time k is generated for each Codec: the flow belief for Codec
j is obtained by taking the time average of the maximum beliefs of
j,

E[B(j)
s] = Ek[B(k,j)

s]. (11)

Now, in order to set a belief for the message size feature, the maxi-
mum between the beliefs is taken,

MaxBs = max
j

(E[B(j)
s]) (12)

so that the most likely Codec is

Codec = argmax(max
j

(E[B(j)
s])). (13)

The rational behind this procedure is that, since Codecs may
change their working state, we first derive a time evolution of the
belief for each Codec; then, by taking the time average, we gather
the flow belief for each Codec and we can choose which is the most
likely employed Codec.

The NBC relative to the average-IPG operates in a similar way,
but does not need to take into account for the different Codecs. For
each window k, the belief B

(k)
τ is derived. The flow belief is then

obtained by the time average,

E[Bτ] = Ek[B(k)
τ]. (14)

43

-25
-20
-15
-10
-5
 0

B
r(k

) μ= 30ms
μ= 40ms
μ= 60ms

-25
-20
-15
-10
-5
 0

 0 30 60 90 120 150 180 210 240

B
s(k

)

Time

μ= 42B
μ= 210B
μ= 252B

Figure 5: Example of the belief evolution during the flow life-
time for the ISAC message size NBC on the bottom plot and
average-IPG on the top plot. ISAC Codec is considered.

Finally, in order to decide whether the flow was generated by
Skype or not, the message size and average-IPG classifiers are com-
bined by evaluating the minimum of the previously derived beliefs,

B = min (MaxBs, E[Bτ]) (15)

and by comparing it to a threshold Bmin. If

B > Bmin (16)

the flow is classified as being a Skype voice flow. Note that this
is equivalent to require that the flow is a valid Skype flow accord-
ing to both the message-size and average-IPG classifiers, therefore
defining a conservative approach.

As an example, Fig. 5 shows the beliefs obtained running the
NBC on the same sample-flow whose evolution is reported in Fig. 2,
in which the ISAC Codec was used. Figure reports the outputs of
the IPG and ISAC NBCs corresponding to the different working
states of the Codec. Each working point is identified by the corre-
sponding mean (μ) value of the Gaussian distribution. Consider-
ing the average-IPG feature (top plot), it can be observed that the
μ = 30 ms class exhibits the highest belief until about 170s. Then,
the NBC correctly detects the change on ΔT to the μ = 60 ms
class. The output of the message-size based NBC is more fuzzy,
since the message-size is more variable. In particular, it is possible
to observe the transient phase at about 25 s and 170 s, correspond-
ing to a change in the RF and Rate of the Skype source. In both
cases, the maximum windowed belief is most of the time larger
than -5, and the flow belief is also very large, hinting to a valid
Skype flow.

4.3 Hemera: Payload Based Classifier
Payload-based classification (PBC) is a traditional technique used

to detect different traffic classes from a traffic aggregate. By ex-
ploiting the knowledge of protocol header format, payload-based
classification consists in inspecting the packet payload at different
layers and matching the headers to those of known applications.

Following this approach and exploiting the observations presented
in previous sections –in particular, exploiting the presence of the
SoM in Skype messages transported by UDP– we devise a PBC
algorithm to reveal Skype traffic. As previously stated, this task is
made difficult by both obfuscation and cryptographic techniques [4,
10]: therefore, additional per-host information is required to assist
the per-flow identification process.

While the coupled per-host per-flow approach makes PBC iden-
tification very robust and reliable, it must not be neglected that PBC

has several important drawbacks. First, since it requires packet pay-
load inspection and per-host state, it is expensive. Second, and even
more important, PBC is unfeasible when TCP is selected as trans-
port layer protocol, or when tunneling techniques, e.g., VPNs, are
used. Third, PBC possibly needs to be constantly updated accord-
ing to changes in the Skype SoM format. Finally, the PBC requires
to observe all flows generated by a given source host. It is there-
fore impractical in backbone links, due to asymmetric routing and
to different paths followed by packets directed to different destina-
tions. For these reasons, we stress that our aim is to use PBC only
for cross-checking purposes.

4.3.1 Per-flow Identification
A UDP flow is identified by using the traditional tuple (source IP,

destination IP, source port, destination port, protocol type). A flow
starts when a packet is first observed, while an inactivity timeout
(conservatively set to 20 s) is adopted to define the flow end.

For each UDP flow, upon arrival of a new packet, the packet
is classified according to the following criteria. A Skype signal-
ing message is detected if the Fun field takes a value in {0x07,
0x02, 0x03, 0x0f}, while a Fun field equal to {0x0d} is used
to identify Skype E2E messages. E2O voice messages are instead
detected when the four-bytes CID Skypeout signature is matched:
i.e., a valid E2O message is therefore required to have the same
CID as the previous one, and to differ in byte 5. UDP port 12340
is also required to be used as either source or destination port.

Following this packet classification, four counters are updated
for each flow: i) the total number of packets in the flow, nTOT ,
ii) the number of Skype signaling messages, nSIG, iii) the number
of Skype E2E data/video/chat/voice messages, nE2E , and iv) the
number of E2O voice messages, nE2O. We notice that nSIG +
nE2E + nE2O ≤ nTOT , as some packets may be classified as
non-Skype.

When the inactivity timer expires, the flow is considered to be
complete and a threshold based algorithm is adopted to classify the
flow. Let Tvoice, Pvoice, Tsig and Psig represent the minimum
number, minimum fraction of voice messages and signaling pack-
ets, respectively. The algorithm identifies a flow as potential E2O,
E2E, signaling or non-Skype flow according to the following strat-
egy:

• E2O if (nE2O > Tvoice) ∧ (nE2O/nTOT > Pvoice)
∧(src port = 12340 ∨ dst port = 12340)

• E2E if (nE2E > Tvoice) ∧ (nE2E/nTOT > Pvoice)

• SIGNALING if (nSIG > Tsig) ∧ (nSIG/nTOT > Psig)

• NOT SKYPE otherwise.

The thresholds are set to: Tvoice =100 packets, Tsig =10 packets,
and Pvoice = Psig =0.9.

4.3.2 Per-host Identification
Since the per-flow classification algorithm may lead to an exces-

sive number of misclassified flows, we also develop a companion
algorithm based on per-host identification: only potential Skype
flows identified by the per-flow classifier that also pass the per-host
identification are considered as generated by a Skype source.

The per-host algorithm is based on the fact that a Skype client al-
ways uses the same UDP port to send/receive traffic. During its pe-
riod of activity, a Skype client contacts several other nodes, so that
each client generates many flows to different clients. Moreover,
to setup a voice connection, signaling messages are exchanged be-
tween the endpoints, leading to several signaling E2E flows. By

44

exploiting this behavior, it is possible to identify a Skype client run-
ning in a given host by considering the (source IP, source UDP port)
couple. Let NSIG, NE2E and NE2O denote the number of signal-
ing, E2E, E2O flows generated by the same source, i.e., the same
(source IP address and UDP port) couple, according to the per-
flow identification criteria described in the previous section, and let
NTOT be the total number of flows generated by the same source.
A flow is identified as being generated by Skype if the following
conditions hold:

• At least 80% of the flows generated by the source are Skype
signalling flows, NSIG

NT OT
> 0.8

• At least 95% of the flows generated are Skype flows, sig-
nalling or voice, NSIG+NE2E+NE2O

NT OT
> 0.95

• The source generated at least 5 flows, NTOT > 5

In order to double-check the classification, all outputs of the
PBC have been manually inspected, so that possible false nega-
tives/positives are added/removed. We checked if the host (ad-
dress,port) was a Skype port by performing a fake HTTP “GET”
request and looking for the Skype reply “HTTP/1.0 501 Not Im-
plemented”. We repeated this check for 1 week. In case no Skype
error message was received or reply was observed, we discarded the
flow to be conservative. Therefore, we consider the PBC output
to be error free. Note that the PBC is very effective in identifying
Skype E2E and E2O flows. However, it is impossible to distinguish
voice/video/data/chat E2E flows, since the SoM header is identical
in all cases.

An important remark has to be made concerning the complexity
of the per-host algorithm – which is much larger than the simple
per-flow classification algorithm, as it requires to monitor and cor-
relate all flows generated by every client. While this may be fea-
sible in a stub network in which all packets flow through the same
node independently of their destination, it is clearly unfeasible in
backbone links. Moreover, the per-host algorithm requires to track
the number of flows generated per source (IP address, UDP port)
identifier, which can grow very large even in a small campus net-
work.

Notice also that, given a host IP address, more than one UDP
port can be identified as Skype port, e.g., in case NAT is used, or in
case addresses are leased using DHCP mechanisms.

5. EXPERIMENTS
In this section we present experimental results obtained running

the classification algorithms on real data traffic – while we defer the
analysis of the sensitivity of classification on the thresholds of the
decision process to Sec. 5.2. In particular, we select two datasets:

• CAMPUS: refers to a 95 hours long trace collected at our
campus access link starting on Monday the 29th of May 2006.

• ISP: refers to a one day long trace, collected from the POP
of FastWeb [13], a major Italian ISP, on Monday the 15th of
May 2006.

The CAMPUS dataset is representative of a typical data connection
to the Internet [14], in which most of the traffic is due to TCP data
flows carrying web, email, bulk file transfer services. Users can
be administrative, faculty members or students. No P2P traffic is
allowed by means of strict policies enforced by firewalls. The ISP
dataset is, on the contrary, very peculiar, since it refers to a very
innovative ISP which is providing end users (residential, SOHO or
large companies) with data, voice and video over IP by means of

All flows

NBC
FP

Skype

Video
Data
Chat
Sig

NBC CSCCSC
FP

CSC
FN

Positive
Voice

FN

FP

NBC
FN

Other
Voip

Traffic

Other
Cyphered

Traffic

All flows>100pkts

Figure 6: Representation of False Positives, False Negatives
with the separate or joint NBC and CSC usage.

either an ADSL or a FTTH link (no PSTN link is offered). Traffic is
therefore composed of data transfers over TCP, VoIP and VideoIP
traffic over RTP/UDP. Moreover, users make extensive use of P2P
applications, VPN services, etc. ISP dataset is therefore more het-
erogeneous than the CAMPUS one, and we expect it to represent a
stiffer scenario. At the same time, in the ISP dataset we also expect
little Skype traffic, as the ISP offers flat-rate tariff to phone calls.

5.1 Measurement Results
Assuming that the PBC classification is reliable for UDP traffic,

Fig. 6 sketches all the possible combinations of flow classification:

• All flows included in the dataset.

• All eligible flows that have NTOT > 100.

• Positive Voice flows pass both the CSC and NBC test, and
are verified by the PBC to be Skype flows.

• False Negatives (FN) are classified as Skype by the PBC, but
are discarded by both the NBC and the CSC.

• CSC False Negatives (CSC-FN) are discarded by the CSC
only.

• NBC False Negatives (NBC-FN) are discarded by the NBC
only.

• CSC False Positives (CSC-FP) pass the CSC test only.

• NBC False Positives (NBC-FP) pass the NBC test only.

• False Positives (FP) pass both the NBC and CSC tests but
fail the PBC test.

In the following, the percentage of FN is computed with respect
to the number of flows identified by the PBC as Skype E2E/E2O;
the percentage of FP is evaluated with respect to the number of
flows that are eligible but not Skype (i.e., flows with at least 100
packets that are discarded by the PBC). To give the reader the intu-
ition about the relative percentage of FP and FN evaluation, let us
make an analogy. Suppose you want to assess the quality of a new
pregnancy test. You select a set of 1000 women. You know that 100
of them are pregnant, according to an oracle. The new test returns
N=120 positive results. Of those, 80 are actually referring to preg-
nant women. Therefore FP=120-80=40 are false positive tests and
FN=100-80=20 are false negative tests: computing the percentage
of FP and FN, you have FP% = 100 × 40/(1000 − 100) = 4.44%
and FN% = 100 × 20/100 = 20%. In our scenario, we use the

45

N OK FP FP% FN FN%

PBC
E2E
E2O

1014
163

— — — — —

NBC
E2E
E2O

1236
441

726
153

510
288

0.68
0.38

288
10

28.40
6.13

CSC
E2E
E2O

2781
161

984
157

1797
4

2.40
0.01

30
6

2.96
3.68

NBC ∧
CSC

E2E
E2O

716
147

710
147

6
0

0.01
0.00

304
16

29.98
9.82

TOT
≥ 100 76025

487729
— — — — —

Table 3: Results for UDP flows, CAMPUS dataset.

PBC as oracle, so that flows that pass the PBC classification form
a reliable dataset. We refer to this set as the benchmark dataset.
In particular, this dataset is built by Skype voice flows considering
the E2O case. In the E2E case, voice, video, data and chat flows
are present, since it is impossible to distinguish among them from
packet inspection. Our tests are the NBC, the CSC and the joint
NBC-CSC classifiers. Notice that the NBC test is expected to fail
when a video/data/chat benchmark E2E flow is tested.

From a preliminary set of experiments on the testbed traces, con-
taining more that 50 Skype voice calls, we tuned the PBC and CSC
classifier thresholds to Bmin = −5 and χ2(Thr) = 150, respec-
tively. Using such choices, further discussed in Sec. 5.2, all flows
were correctly identified as E2E or E2O, and neither FP nor FN
were identified. Using the same threshold setting, we then apply
the classification to real traffic traces: the results are summarized
in Tab. 3, 4 and 5. For each dataset, the number N of flows identi-
fied by the different classifiers is reported, splitting E2E and E2O
cases. Considering UDP case, Tables report also the correcly iden-
tified flow number (OK), FN and FP absolute numbers and relative
percentages. Finally, last row reports the total number of flows,
highlighting the amount of eligible flows.

Let us focus on the CAMPUS dataset reported in Tab. 3, in which
the PBC identifies 1014 E2E flows and 163 E2O flows: this is the
benchmark dataset. When the NBC classification is used in iso-
lation, while the classification is very conservative (% NBC-FP=
0.68), there is an important number of discarded flows (% NBC-FN
= 28.40): by manual inspection, we observed that most of the latter
flows exhibit a bitrate much larger than the typical voice bitrate,
hinting to video/data transfers being classified as E2E by the PBC.
Indeed, as neither video nor data transfers are allowed toward the
PSTN gateway, the percentage of NBC-FN is significantly smaller
in the E2O case. Considering now the effectiveness of the CSC
alone, we observe that in the E2E case the percentage of CSC-FP
is quite large (2.40%). This phenomenon is due to Skype signaling
flows that (correctly) passes the CSC test. In the E2O case, no sig-
naling flow is present, yielding thus a negligible CSC-FP. Finally,
looking at the percentage of CSC-FN, less than 3% of flows that are
valid Skype flows are discarded, which is possibly due to a conser-
vative χ2(Thr) setting. When the CSC and NBC are combined,
the percentage of FP drops to almost zero (indeed, no FP are iden-
tified at all in the E2O case, and only 6 flows are FP in the E2E
case) yielding thus to a conservative classification engine. The per-
centage of FN is 29.98% (9.82%) considering E2E (E2O) flows:
based on previous remarks, the CSC/NBC combination allows to
discard video and data transfers, and correctly identify only those
Skype flows that actually carry voice traffic.

A similar reasoning applies to the ISP UDP dataset reported in
Tab 4. Few Skype calls are found by the PBC classifier, possi-
bly due to the flat rate offered to phone calls by the ISP. It is worth

N OK FP FP% FN FN%

PBC
E2E
E2O

65
125

— — — — —

NBC
E2E
E2O

27437
295

50
124

27387
171

73.73
0.46

15
1

23.08
0.80

CSC
E2E
E2O

191
190

57
123

134
67

0.36
0.18

8
2

12.31
1.6

NBC ∧
CSC

E2E
E2O

51
163

49
122

2
41

0.01
0.11

16
3

24.62
2.40

TOT
≥ 100 37212

258634
— — — — —

Table 4: Results for UDP flows, ISP dataset.

CAMPUS ISP

NBC
E2E
E2O

20910
2034

60
646

CSC
E2E
E2O

403996 46876

NBC ∧ CSC
E2E
E2O

621
313

12
0

TOT
≥ 100 1646424

23856424
108831

1614553

Table 5: Results for TCP flows, both datasets.

noticing that the NBC (correctly) identifies 27437 voice flows, most
of which correspond to actual ISP’s VoIP flows carried over RTP.
Only combining the CSC allows to detect the true Skype voice
flows. These results confirm that the NBC-FP may be due to non-
Skype VoIP applications that generate packets with the same packet
size and inter-packet gap characteristics. The significant percent-
age of E2E NBC-FN is due to the fact that the NBC is tuned to
only identify voice flows. It discards E2E flows that carry video,
data and chat services. As previously stated, this is due to the fact
that the NBC cannot isolate video/chat/data flows from E2E flows.

Finally, we consider flows carried by TCP reported in Tab. 5. No
PBC cross-checking is possible in this case. Considering the CAM-
PUS dataset, the NBC identifies almost 21000 (1.27%) flows as pos-
sible voice flows. The CSC instead identifies more than 400.000
(24.54%) flows as “random-payload” flows: this is not surprising,
since applications relying on TCP usually transport raw/compressed
data with no deterministic header at the segment start. The joint
NBC/CSC usage reduces Skype identifications to only 621 E2E
and 313 E2O flows. By manually inspecting those flows, we notice
that 258 TCP flows are using server port equal to 443, which is sus-
picious as the port it associated to the HTTP over TLS service [16].
However, we verified that those flows were true Skype voice flows
since, i) Skype uses port 443 to pass firewalls, and ii) TLS has a
2 Bytes long deterministic header that would make the CSC test
fail. Similarly, 52 TCP flows are associated to the port 22 (i.e., the
SSH protocol [17]): we suspect these flows to be False Positives,
as the CSC cannot be trusted in this case and Skype is not known
to use port 22. No other suspicious port number can be identified:
moreover, most of TCP flows identified as Skype voice flows are
terminated at the Campus WiFi NAT-box IP address, hinting with
a very high probability to Skype being used under restrictive net-
work policies. We can conclude therefore that in the TCP case, the
percentage of FPs is negligible, since the 52 potential FPs have to
be weighted against more than 1.64 million of connections.

From the above analysis, we can conclude that

• the NBC is very effective in identifying all voice traffic over
IP, independently from the application;

46

0

1

2

3

4

5

-30 -25 -20 -15 -10 -5 0

FP
 [

%
]

E2E
E2O

0

20

40

60

80

100

-30 -25 -20 -15 -10 -5 0

FN
 [

%
]

Bmin

E2E
E2O

Figure 7: Percentage of FPs (top plot) and FNs (bottom plot)
for E2E and E2O flows versus Bmin.

• the CSC is very effective in identifying all Skype traffic over
UDP; when dealing with TCP flows, it identifies all encrypted
or compressed traffic, which however corresponds to a quite
large fraction of the traffic;

• the joint usage of NBC and CSC is very effective in detecting
Skype voice traffic over UDP or TCP: almost zero False Pos-
itives are identified, yielding to a conservative identification,
and few percentage of False Negatives are left out.

5.2 Parameter Tuning
In this section we investigate the sensitivity of the NBC and CSC

classifications to the specific setting of the thresholds used in the
decision processes. Sensitivity analysis is performed on the reliable
benchmark dataset, gathered applying the PBC classification to the
CAMPUS UDP traffic.

We start by considering the key of the NBC decision process, i.e.,
the minimum threshold Bmin that both inter-packet gap and mes-
sage size beliefs must pass for the flow to be classified as voice.
When Bmin is small (i.e., large negative value), the NBC is not
strict in requiring that the observed characteristics are compliant
with the Skype voice source model (yielding to NBC-FPs). Con-
versely, when Bmin is large (i.e., tends to zero), the NBC require-
ments are tight, and some true Skype flows may be discarded (NBC-
FNs). The impact of the threshold Bmin on the number of False
Positives and False Negatives is shown in top and bottom plots of
Figs. 7 respectively. Percentages are shown by separately consid-
ering E2E and E2O flows classes. Observe that the NBC is more
robust and less sensitive to Bmin when it is applied to E2O traf-
fic. Indeed, the presence of other services makes the benchmark
dataset includes E2E flows that are not voice flows (the dataset in-
cludes video calls, chat messages, file transfers, etc.): such flows
are possibly correctly discarded by the NBC but accounted for as
False Negatives in the graph. so that even for very small values of
Bmin, the percentage of False Positives is quite small, confirming
that our stochastic characterization is accurate. According to these
graphs, Bmin could be reasonably set between −8 and −3 (our
choice is Bmin = −5).

Considering now the CSC, we assess the impact of the thresh-
old χ2(Thr) on the classification results. From top plot of Fig. 8
we gather that, by increasing χ2(Thr), the classifier requirements
become less tight, and the number of E2E CSC-FPs increases; how-
ever, the increase is very steep and for χ2(Thr) > 100 the number

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300

FP
 [

%
]

E2E
E2O

 0

 20

 40

 60

 80

 100

 0 100 200 300

FN
 [

%
]

χ2(Th)

E2E
E2O

Figure 8: Percentage of FPs (top plot) and FNs (bottom plot)
for E2E and E2O flows versus χ2(Thr).

of False Positives does not significantly increase any more. No-
tice that almost no False Positive occurs for E2O traffic, since, as
was already noticed in Fig. 3, the value of χ2 for deterministic
groups (as those in the header of E2O flows are) is very large and
easily distinguishable by the CSC from non-deterministic groups
of bits. Bottom plot of Fig. 8 shows that also the CSC-FN curve is
steep: a very small value of the threshold induces the CSC to dis-
card most of the flows. Flows start to be properly classified when
the threshold increases beyond 50. The slight CSC-FN increase for
larger values of χ2(Thr) that can be observed in the E2E curve is
due to the misclassification of mixed groups in the E2E message
header: if the threshold is large enough, these groups are classi-
fied as random and not mixed groups, and the flow is discarded.
From the joint analysis of these two graphs, we can conclude that
correct setting of χ2(Thr) is between 100 and 200 (our choice is
χ2(Thr) = 150).

So far, we have investigated the robustness of the classifiers in
isolation: we now intend to analyze the effect of their joint us-
age, i.e., when a flow is classified as generated by Skype only upon
agreement of both CSC and PBC. Focusing again on the bench-
mark dataset, we explore a number of combinations of Bmin and
χ2(Thr) in terms of the obtained number of False Positives and
Negatives for E2E and E2O cases. Left plot of Fig. 9 reports the FN
percentage for E2E flows, where the thick solid line is obtained for
χ2(Thr) =150. It is worth recalling that the quite large number of
FNs derives from the fact that data/video/chat flows are considered
as E2E flows in the PBC benchmark dataset: as these flows differ
significantly from voice traffic, they are correctly discarded by the
NBC. We notice that small values of χ2(Thr) induce large num-
bers of False Negatives, because true Skype flows are erroneously
discarded by the CSC classifier (and furthermore these CSC-FNs
add to the NBC-FNs). Similarly, for the E2O case depicted in right
plot of Fig. 9, although with a smaller magnitude in reason of the
absence of data/video/chat heterogeneity.

Finally, we plot the False Positives detection triggered by the
join usage of NBC+CSC in Fig. 10, which testifies the conserva-
tiveness of the joint classifier. Indeed, the FP number is extremely
low, about one over ten thousand flows: furthermore, with a proper
threshold choice, practically no flow is erroneously classified as be-
ing Skype. E2O case is not reported as only either 1 or 0 FP occur
whatever setting. These results, beside highlighting the effective-
ness of the joint use of NBC and CSC classifiers, also confirm the

47

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-20 -15 -10 -5 0

FN
 [

%
]

Bmin

E2E

χ2(Th)=20
χ2(Th)=30
χ2(Th)=40
χ2(Th)=70

χ2(Th)=100
χ2(Th)=150

-20 -15 -10 -5 0
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Bmin

E2O

Figure 9: FN percentage for E2E (left plot) and E2O (right plot)
cases versus Bmin, and different χ2(Thr).

validity of our initial Bmin = −5 and χ2(Thr) = 150 thresholds
choice.

6. CONCLUSIONS
This paper tackled the problem of the identification of Skype

voice calls. We presented two classifiers to reveal Skype traffic
from aggregate streams of packets. The first approach exploits the
statistical properties of message content to let patterns and struc-
tures naturally emerge. The second approach instead makes use of
Naive Bayesian techniques to match the stochastic characteristics
of voice traffic generated by Skype sources. Our experimental re-
sults show that the combination of the above techniques is effective
in both discriminating the voice streams from the traffic aggregate,
and in further identifying the application, i.e., Skype.

The performance of such classifiers has been compared and cross-
checked with those achieved through a traditional deterministic ap-
proach, based on deep-packet inspection. The design of the payload-
based classifier stems from a partial, and incomplete, reverse engi-
neering of the Skype messages. Results show that the joint use of
the statistical classifiers outperforms the payload-based technique,
as the kind of information that can be exploited yields to a more
robust classification. Negligible False Positives are detected, and
very few False Negatives are left out by the proposed approach.

While the Bayesian and the payload based classifiers follow tra-
ditional design, the Chi-Square test leverages on randomness intro-
duced by the obfuscation techniques used by Skype. We believe
that this last approach can be successfully extended to the more
general traffic classification problem.

7. ACKNOWLEDGMENTS
This work was supported by the Italian Ministry of University,

Education and Research (MIUR) under the PRIN MIMOSA. We
would like to thank FastWeb for allowing us to monitor their back-
bone links, and the Sigcomm shepherd for her valuable suggestion.

8. REFERENCES
[1] Skype web site, http://www.skype.com
[2] Hesiod, “Theogony,” ca 700 BC

 0

 0.005

 0.01

 0.015

 0.02

 0.025

-20 -15 -10 -5 0

Pe
rc

en
ta

ge
 o

f
Fa

ls
e

Po
si

tiv
es

 -
 E

2E

Bmin

χ2(Th)=20
χ2(Th)=30
χ2(Th)=40
χ2(Th)=70

χ2(Th)=100
χ2(Th)=150

Figure 10: Percentage of FPs for E2E flows versus Bmin, for
different values of χ2(Thr).

[3] S. A., Baset, H. Schulzrinne, “An Analysis of the Skype
Peer-to-Peer Internet Telephony Protocol.” IEEE
Infocom’06, Barcelona, Spain, Apr. 2006.

[4] P. Biondi, F. Desclaux, “Silver Needle in the Skype.” Black
Hat Europe’06, Amsterdam, the Netherlands, Mar. 2006.

[5] S. Guha, N. Daswani and R. Jain, “An Experimental Study of
the Skype Peer-to-Peer VoIP System”, 5th International
Workshop on Peer-to-Peer Systems, Santa Barbara, CA, Feb.
2006.

[6] K. Ta Chen, C. Y. Huang, P. Huang, C. L. Lei “Quantifying
Skype User Satisfaction”, ACM Sigcomm’06, Pisa, Italy, Sep.
2006.

[7] K. Suh, D. R. Figuieredo, J. Kurose, D. Towsley,
“Characterizing and detecting relayed traffic: A case study
using Skype.”, IEEE Infocom’06, Barcelona, Spain, Apr.
2006.

[8] M. Carson, D. Santay, “NIST Net: a Linux-based network
emulation tool.” ACM SIGCOMM Computer Communication
Review, V.33, N.3, July 2003, pp:111-126.

[9] GlobalIPSound web site,
http://www.globalipsound.com/

[10] T.Berson, “Skype Security Evaluation.” Online Technical
Report, http://www.skype.com/security/
files/2005-031securityevaluation.pdf, Oct.
2005.

[11] D.S.Sivia,“Data Analysis: A Bayesian Tutorial.” Oxford
University Press, Sep. 1996.

[12] A.Moore, D. Zuev, “Internet Traffic Classification Using
Bayesian Analysis Techniques.” ACM SIGMETRICS’05,
Banff, CA, Jun. 2005.

[13] FastWeb web site,
http://company.fastweb.it/

[14] M.Mellia, R.Lo Cigno, F.Neri, “Measuring IP and TCP
behavior on edge nodes with Tstat”, Computer Networks,
Vol. 47, No. 1, pp. 1–21, Jan 2005

[15] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, “RTP:
A Transport Protocol for Real-Time Applications”,
RFC3550, Jul. 2003.

[16] E. Rescorla, “HTTP Over TLS”, RFC 2818, May 2000.
[17] S. Lehtinen, C. Lonvick, “The Secure Shell (SSH) Protocol

Assigned Numbers”, RFC 4250, Jan. 2006.

48

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

