
Detecting Skype flows in Web traffic

Emanuel P. Freire,∗ Artur Ziviani,† and Ronaldo M. Salles∗

∗IME – Military Institute of Engineering
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Abstract—Network managers face nowadays a challenging
problem to detect traffic from Skype, a very popular application
for VoIP communications. If no restrictive firewalls are adopted,
Skype uses UDP as its preferred transport protocol, but it is
known that due to its high capacity of adaptation, Skype can
operate behind many firewalls and network proxies without user
configuration. Behind restrictive firewalls, Skype uses Web TCP
ports (80 or 443) as a fallback mechanism to delude firewalls
and other network elements. This strategy renders Skype traffic
disguised as Web traffic quite difficult to detect by network
operators. In this paper, we propose a method to efficiently detect
Skype flows hidden among Web traffic. We validate our proposal
using real-world experimental data gathered at a commercial
Internet Service Provider (ISP) and an academic institution.
Our experimental results show a performance of around 90%
detection rate of disguised Skype flows with a false positive rate
of only 2%, whereas a 100% detection rate of Skype flows in Web
traffic is achieved with a false positive rate limited to only 5%.
We also evaluate the feasibility of our proposal in a real-time
Skype detection scenario.

I. INTRODUCTION

An efficient classification of the application protocol re-

sponsible for a given traffic is a fundamental issue in network

management. Typically, network operators rely on TCP/UDP

port numbers to allow or deny access into their domains,

following a list with registered and well known TCP/UDP

port numbers provided by the Internet Assigned Numbers

Authority (IANA) [1]. Recently, however, the efficient classifi-

cation of the application protocol responsible for a given traffic

has became a more challenging problem, mainly because

TCP/UDP port numbers are no longer a reliable information

source to identify the application responsible for a given

network traffic [2]. There is usually no control to ensure that

an application only uses its reserved ports to send or receive

data, and with the increasing use of network elements such

as firewalls, NAT boxes and proxies, network applications

evolved to operate in different environments with minimal user

configuration, for example, dynamically choosing a TCP/UDP

port number.

In order to optimize the use of network resources, very

restrictive firewalls are commonly adopted by network man-

agers in many organizations using port numbers to select some

applications to receive priority treatment or to be blocked.

Although being very restrictive, such firewalls are unlikely

to block Web traffic because it is usually perceived as a basic

service considered essential for the most part of organizations.

As HTTP is typically the most popular application protocol

in the Internet, it has become usual to find applications—

such as recent P2P file sharing systems [3] as well as media

streaming [4] or VoIP calls—using TCP ports 80 (HTTP) or

443 (HTTPS) for non-HTTP traffic to delude firewalls or other

network elements.

Among the applications that adopt the strategy of disguis-

ing their flows as Web traffic to delude firewalls and other

network elements, Skype is of particular importance due to

its huge popularity. Skype is a very popular voice over IP

(VoIP) application with a proprietary closed-source protocol.

It can easily work in different network environments, as

it can automatically detect network characteristics and use

other computers to relay its traffic. It is also known that

Skype can delude a network firewall by using Web ports to

establish communication with other Skype peers. This strategy

is adopted by Skype as a fallback mechanism in the case of

other strategies fail to get through a restrictive firewall. Such

a strategy renders Skype traffic disguised as Web traffic quite

difficult to detect by network operators.

In this paper, we are particularly interested in investigating

the detection of Skype flows in Web traffic. In a previous

work [5], we have investigated metrics to distinguish Skype

flows from Web traffic using two Goodness-of-Fit tests, the

Kolmogorov-Smirnov and the Chi-square test. We build upon

the metrics proposed in that work to develop a novel detection

methodology to automatically classify supposed Web traffic

into either legitimate Web browsing or Skype VoIP flows using

Web ports. One can also classify these flows searching for

Skype patterns in captured data, but such approach is likely to

be more dependent of Skype version or specific traffic details.

We consider our approach more robust because it can detect

Skype traffic without a search for particular Skype patterns

or signatures and without regarding payload information. We

intend to use a method in our detection that could capture

general characteristics of VoIP flows such as the regular flow

of small packets.

The recent work by Bonfiglio et al. [6] shows two different

approaches to identify Skype traffic in TCP or UDP flows.

Their first method uses some Skype-specific information for

UDP detection and it uses the Pearson’s Chi-Square test to

verify if payload data appears to be random for UDP or



TCP detection. We adopt the Chi-Square test, a variation

of Pearson’s Chi-Square test, and in a different context: to

compare flows parameters with empirical data derived from

real Web flows. Our methodology was specifically designed to

deal with the HTTP protocol and we believe it can be extended

to detect other applications that may be using HTTP ports as

well.

We evaluate our Skype detection methodology using exper-

iments with real-world data gathered at a commercial Internet

Service Provider (ISP) and an academic institution. Our results

show that the Chi-square test is more likely to achieve better

results than the Kolmogorov-Smirnov test for Skype detection.

The experimental results also show that the proposed method-

ology achieves good performance in detecting Skype flows in

Web traffic. Such a good performance may be illustrated in our

experimental results by the observation of a 90% detection rate

of disguised Skype flows with a false positive rate of only 2%,

whereas a 100% detection rate of Skype flows in Web traffic

with a false positive rate limited to only 5%. We also evaluate

the feasibility of our proposal in a Skype detection scenario

with real-time monitoring. In such case, network managers

could choose to perform an immediate action after detection,

for example, blocking all traffic identified as Skype from his

network or giving such traffic a priority link.

The remainder of this paper is organized as follows. Sec-

tion II briefly discusses related work in the classification of

applications and Skype analysis. In Section III, we present

our methodology to distinguish Skype flows from Web traffic.

Based on this methodology, we propose a Skype detection

system in Section IV. Section V presents our experimental

results evaluating the proposed detection system. Finally, we

conclude and discuss future work in Section VI.

II. RELATED WORK

One of the first works to characterize network traffic anoma-

lies was the study of Barford and Plonka [7]. The authors

defined three basic types of network anomalies: anomalies

caused by network operations such as device malfunction

or configuration changes, anomalies caused by abuses like

denial of service attacks and anomalies caused by users such

as flash crowd events. In the work of Lakhina et al. [8] a

more detailed characterization is presented and the use of the

subspace method is proposed for anomaly diagnosis. Other

work from the same authors [9] showed the use of entropy as a

summarization tool. In [10], the authors searched for anomaly

detection in large scale networks using traffic matrices and a

Kalman filter to characterize a model describing the normal

behavior and compare it with the observed behavior. Some

different methods were tested and the results were compared

using ROC curves. In this work, we used the approach of

building a model of the “normal” behavior and compare it

with the observed behavior and we also used ROC curves for

evaluation, but we are interested in detecting a specific kind

of traffic anomaly: the use of the HTTP port by applications

to send non-HTTP traffic. We used a Web workload model

developed in a previous work [5], which was based on earlier

works in this subject [11], [12].

Application identification and classification has been the

focus of recent related work [2], [13]–[16]. Karagiannis et

al. [2] develop a traffic classifier which operates in various

levels of detail and without looking to the payload information.

In [13], authors search for an accurate application identifica-

tion methodology composed of several steps. It involves man-

ual intervention and a previous knowledge of the protocols’

behavior. Bernaille et al. [14] investigate a fast but not so

accurate traffic classification method based on the size of the n
first packets found within a given flow. Ma et al. [15] propose

a framework for unsupervised protocol inference, comparing

three classification techniques for protocol classification. The

work of Won et al. [16] proposes a hybrid approach for

application traffic identification based on signature matching

on the initial packets or payload bytes and session information.

Nevertheless, to the best of our knowledge, no method was

specifically designed to deal with protocol anomalies in Web

traffic.

Due to the huge popularity Skype achieved in the last

few years, analysis of the Skype protocol and characteris-

tics have been the focus of recent related work. Baset and

Schulzrinne [17] present an analysis of the Skype behavior

during login, call establishment, firewall/NAT traversal, and

other operations. Guha et al. [18] performed in 2005 five

experiments to analyze Skype traffic characteristics and better

understand its operation. Suh et al. [19] monitored Skype

traffic using relay nodes. They used heuristics and statistical

analysis to detect Skype relayed traffic. Ehlert et al. [20]

studied Skype network traffic searching patterns and traffic

signatures that can allow Skype to be detected. Bonfiglio et

al. [6] recently adopted two techniques to detect Skype traffic:

one method uses the Chi-Square test while the other is based

on Naive Bayesian Classifiers. The results were evaluated

with a payload-based classification and the best results were

obtained using the two detection methods combined.

In contrast to related work, our proposed Skype detection

system is able to distinguish Skype flows in Web traffic

without a search for particular Skype patterns or signatures

and without regarding payload information. We believe this

is a significant contribution as our relatively simple method-

ology might be extended in future work to develop a more

generalized system to detect network anomalies in Web traffic

caused by other applications such as video streaming and P2P

file sharing.

III. METHODOLOGY

The detection process can be subdivided in two steps. First,

we define a HTTP Workload Model and capture real Web data

to build empirical distributions of some relevant parameters.

Then, we capture Web with Skype data, calculate the same

relevant parameters for each flow and use a Goodness-of-

fit test to decide if the computed parameters are compatible

with the empirical distributions derived in the previous step,

classifying each flow as Web or Skype. In this section, we



review the Web model and the statistical tests used and present

an overview of the Skype program.

A. HTTP Workload Model

We are interested in finding Skype flows hidden among

Web flows. Since we avoid relying on program signatures or

patterns that can be easily changed, we must define a model

for evaluate Web “normal” behavior. In this paper, we build

upon the model defined in [5]. This model has the following

parameters:

• Web request size;

• Web Response size;

• Interarrival time between requests;

• Number of requests per page;

• Page retrieval time;

B. Goodness of fit tests

In the case where we do not know the underlying dis-

tribution of some population, we can use a goodness-of-fit

measure to test if a particular distribution can be satisfactory

as population model. We used the chi-square test and the

Kolmogorov-Smirnov test to distinguish Skype flows from

Web traffic. These tests had already been used for anomaly-

based intrusion detection [21], [22], or to verify the presence of

random payloads in a Skype detection [6]. But in our work,

we do not use the chi-square χ2 value or the Kolmogorov-

Smirnov D value to accept or reject the initial hypothesis with
a given significance level based in some known distribution.

We directly compared the calculated χ2 and D values with
given thresholds to decide if some flow is likely to be Skype or

not. This solution can provide more simplicity and flexibility

to our program, since we only need to change the threshold

values to get a loose classification or a more conservative one.

1) Chi-square test: The χ2 goodness of fit test, was first

investigated by Karl Pearson in 1900 [23]. Basically, it tests a

null hypothesis that the observed frequencies of some indepen-

dent events follow a specified distribution. Suppose we have

n observations from a population classified into k mutually
exclusive classes and there is some theory or hypothesis which

says that an observation falls into class i with probability pi

(i = 1, . . . , k), so, the number of events expected in class i is
Ei = npi. If Oi is the number of events observed in class i,
the chi-square statistic χ2 is the sum over all bins as given by

χ2 =

k
∑

i=1

(Oi − Ei)
2

Ei

. (1)

A large value of the sum indicates that is rather unlikely

that the Oi values are drawn from the population represented

by the Ei.

2) Kolmogorov-Smirnov test: The Kolmogorov-Smirnov

test [24] also tests if a sample comes from a population

with a hypothesized distribution. It is based on the maximum

difference between two cumulative distributions, F0(x) and
SN (x). F0(x) is some specific cumulative frequency distribu-
tion function, in our case, the empirical distribution function

derived from the training part. SN (x) is the cumulative step
function of a sample of N observations or, in other words,

SN (x) = c/N where c is the number of observations with a
value less than x. The Kolmogorov-Smirnov D value is given
by

D = max
(

|SN (x) − F0(x)|
)

. (2)

C. Skype characteristics

Skype adopts a proprietary protocol to perform peer-to-peer

communication among users. It does not use SIP or other

known signaling protocol for VoIP calls and all its traffic is

end-to-end encrypted. Skype has the ability to automatically

detect network characteristics and choose the best option

available to communicate with other Skype peers. As shown in

Skype related articles [17], [20], [25], it only uses Web ports as

a fallback mechanism, when UDP is not available. In adopting

this strategy, Skype can successfully work behind many restric-

tive firewalls or proxies without user configuration. Skype is

also known to have traffic when the program is running but

not being used, as it can relay traffic from other hosts. Any

computer with sufficient resources might automatically start

relaying traffic from other Skype users, but this apparently

does not happen in a firewall-restricted computer. Skype also

generates traffic to verify if its peers are still active and in

other operations such as logins. This traffic does not represent

VoIP calls and ideally should not be identified as Skype in our

tests.

IV. DETECTION PROCESS

The first step of the detection process is using a training

dataset to characterize a “normal” Web traffic behavior. We

capture HTTP full packet traces using the tcpdump [26]

program, generating dump files. We have developed a software

based on the tcpflow [27] program to read these dump

files and calculate the parameters present in the Web workload

model defined in Section III-A. tcpflow is a GPL software

that can read tcpdump captured data and separate each flow

present in it. Our software works only with Web traces, it can

separate each flow present in a capture file, define Web pages

boundaries for each flow, and calculate our parameters for each

Web page. A Web page is considered as the complete set of

one or more objects in a Web document, normally a HTML

file and some images. In this part, while searching for Web

pages boundaries, we read HTTP headers to clearly identify

a Web request or a Web response and we also compute the

inactivity time between Web messages. We must also assure

that our data is pure HTTP, so we made a full packet capture

to filter all non-HTTP data. After the calculations for all Web

flows present in the dump file, the results are combined and

we build empirical distributions showed in Section IV-A that

will be used in the statistical tests.

The second step is the detection part. Again, we captured

Web packet traces using tcpdump, but this time only TCP/IP

headers were captured. We developed another software to read

dump files and calculate each model parameter. This software



TABLE I
WEB TRAINING TRACES CAPTURED.

Trace Period Average daily volume

ISP-1 18-20 Jun 2007 45 GB
ISP-2 14-16 Aug 2007 50 GB
ACD-1 14-17 Aug 2007 35 GB
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Fig. 1. CDF of the sizes of Web requests.

is different from the program used in the first part because this

time the calculations and the division of flows in Web pages

are done without examining TCP payload (HTTP headers)

information. The procedure for defining Web messages sizes

is to consider every MTU-sized packet as a part of the same

Web message, if there is not too much inactive time between

them. The procedure for defining Web pages boundaries is

also based on inactivity time with a fixed threshold.

For each Web page, the five parameters are calculated again,

but the results have different treatment. The number of requests

per page and the page retrieval time have a single value in

each Web page and are somewhat correlated, so we used the

number of requests per page as a filter to remove smaller flows.

In fact, a Skype flow persists at least for some seconds, so

it must have many requests. The other three parameters are

represented by a list of values and they are used in Equations

(1) and (2) to generate a χ2 or a Kolmogorov-Smirnov D
score. Each parameter generates a score, so in order to make

a classification, we have three values that can be compared

with thresholds to define if this set of related request-response

messages is likely to be Skype or not. For classifying the

entire flow, the results obtained for each flow component are

combined. If the majority of flow components are identified

as Skype, the flow itself is classified as Skype traffic.

A. Training Dataset

We used two types of real-world packet traces, one gathered

at a commercial Internet service provider (ISP) and the other

originated from an academic institution (ACD). Information

about our training traces is shown in Table I. Trace ISP-1 and

ISP-2 were captured from two distinct links of the same ISP,

located in Niterói, Brazil and with a 2 months interval between
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them. Trace ACD-1 was captured from the main Internet link

of an academic institution located in Petrópolis, Brazil. The

average daily volume represents the amount of Web traffic

captured divided by the number of days, not the total average

traffic through the link.

Figure 1 presents the Cumulative distribution function

(CDF) of the Web request messages sizes for all traces. We

observe that Traces ISP-1 and ISP-2 have a very close graph

and Trace ACD-1 is slightly inferior. For each trace, the

volume of requests larger than 1,500 bytes was less than 0.8%

of all computed requests. In Figure 2, we have the CDF of

the Web response messages sizes for all traces. Again, Traces

ISP-1 and ISP-2 are very similar and Trace ACD-1 is a little

inferior before the 40,000 bytes mark. In all traces, the number

of Web responses larger than 100,000 bytes was not significant

(less than 1%), but their share in volume was around 40% for

Traces ISP-1 and ISP-2 and 31% for Trace ACD-1.

Figure 3 shows the CDF for the interarrival times between

Web requests. It is the time interval between two consecutive

requests for the same Web page, therefore this is a metric

for Web pages with two or more requests. As the number of

requests in a page increases, more values are generated for



TABLE II
WEB TEST TRACES CAPTURED.

Trace Date Duration Number of Skype flows

ISP-3 23 Jul 2007 8h 80
ISP-4 22-23 Aug 2007 16h 85

these three parameters and there will be more terms in test

Equations (1) and (2). We assume that a bigger number of

terms in test Equations produces more accurate results, so this

is another reason to filter flows with few requests per page.

From Traces ISP-1 and ISP-2, captured with a two months

delay, we may assume that the training dataset generated

remains valid for all this time period. There are also some

differences between HTTP versions 1.0 and 1.1. We intended

to perform one analysis for each HTTP version, but the number

of HTTP/1.0 messages was less than 5% of the total messages

in all traces. So, all analysis were based only on HTTP/1.1 data

and the HTTP/1.0 messages were discarded.

B. Web Test Dataset

In order to evaluate our detection methodology, we captured

the evaluation traces shown in Table II. Our collaborative ISP

provides valid dynamic IP addresses for its clients, and there

are no closed ports or firewall restrictions in their way to the

Internet. We suppose there is no Skype traffic in this trace

other than our Skype flows, since it only uses Web ports as

a fallback mechanism. For all traces, the Skype calls used for

evaluation were produced by a small network of computers

behind port-restrictive firewalls. It was used Skype versions

1.3 and 1.4 for Linux and version 3.5 for Windows.

V. EXPERIMENTAL RESULTS

In order to present our results, we use ROC curves, a

graphical plot of the sensitivity against (1−specificity) of a
binary classifier. ROC is an acronym for receiver operating

characteristic, sensitivity is the same as true positive rate and

(1−specificity) is equal to false positive rate. The classifier has
a discrimination threshold that is varied to produce different

points in the curve. We have a better classification as the

curve approaches the perfect result when all true positives are

found (true positive rate is 1) and no false positives are found

(false positive rate is 0). The true positive rate is estimated

as the number of positive events correctly classified over the

number of total positive events and the false positive rate is

estimated as the number of negatives incorrectly classified over

the number of total negatives.

A. Detecting Skype flows

The empirical distributions shown in Section IV-A are now

compared with data generated from each individual flow. In

our test traces ISP-3 and ISP-4, we captured TCP/IP headers

from ports 80 and 443 and manually identified all flows

generated from our Skype calls to serve as reference for the

output of our software. At first, each metric was evaluated

separately from the others and then we evaluate the case when
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Fig. 4. Evaluating χ2 ROC Curves.

TABLE III
TRUE POSITIVE RATE (TPR) AND FALSE POSITIVE RATE (FPR) OBTAINED
WITH THRESHOLDS 1, 2, 3 FOR TRACE ISP-3 AND χ2 DETECTION.

Point Thr. 1 Thr. 2 Thr. 3 TPR FPR

1 3,000,000 100,000 5,000 0.1375 0.0001
2 3,000,000 50,000 5,000 0.2375 0.0002
3 2,000,000 50,000 5,000 0.2625 0.0003
4 2,000,000 50,000 2,000 0.2750 0.0003
5 1,500,000 50,000 2,000 0.2875 0.0004
6 1,500,000 25,000 1,000 0.4000 0.0007
7 1,500,000 10,000 1,000 0.4625 0.0011
8 1,000,000 10,000 1,000 0.5250 0.0019
9 500,000 8,000 800 0.5875 0.0039
10 500,000 5,000 750 0.6000 0.0043
11 250,000 5,000 750 0.6125 0.0054
12 100,000 5,000 750 0.6750 0.0073
13 100,000 4,000 500 0.6875 0.0075
14 20,000 1,000 500 0.8750 0.0161
15 10,000 1,000 500 0.9500 0.0236
16 10,000 1,000 250 0.9625 0.0258
17 10,000 500 200 0.9750 0.0285
18 5,000 200 100 1.0000 0.0527

all of them are jointly considered. All Skype flows generated

used port 443 to send traffic.

We tested some different configurations in the detection pro-

gram to search for the best results. As shown in Figure 4, each

metric used alone has an inferior classification performance

in comparison with the combined solution. Metrics 1, 2 and

3 are Web request size, Web response size, and interarrival

time between requests, respectively. We also test a detection

based only on two metrics, a detection based on any two of the

three metrics and a detection based on both tests (χ2 and K-S).

They were all less accurate in comparison with the chi-square

test using all three metrics combined. In this case, we have

three threshold values for each point. The method used to find

optimal points can be summarized as follows: each parameter

is individually incremented and decremented by small steps

and the best values are selected after the generation and test

of a large list of threshold values. In the final sequence, all

threshold values must be in decreasing order. In Table III

we have the optimal values obtained for trace ISP-3 and

χ2 detection when all thresholds are required for a positive
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Fig. 5. ROC Curves for χ2 detection.
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Fig. 6. ROC Curves for Kolmogorov-Smirnov D detection.

classification. Each line represents a point in the curve shown

in Figure 4 obtained with all metrics. As the threshold value

decrease, the true positive rate grows, but the false positive

rate also increases.

The ROC curves for the chi-square detection are shown in

Figure 5. The parameters were calculated only for flows with

more than 20 requests, performing a total of 17,374 flows in

Trace ISP-3 and 24,662 in Trace ISP-4. We observe that both

graphs had similar results, but the results for Trace ISP-3 were

slightly better. We can achieve around 90% of 80 Skype flows

correctly identified (i.e. true positive rate) with less than 2%

of 17,294 non-Skype flows incorrectly identified as such (i.e.

false positive rate). Likewise, our experimental results also

show a 100% detection rate with around 5% of false positives.

The results for the K-S detection are presented in Figure 6.

For Trace ISP-3, we can achieve a true positive rate of 70%

with a false positive rate around 2% or a 80% detection with

5% of false positives. Comparing Figures 5 and 6, we observe

that the K-S results are not so good as the chi-square detection

as the points over the χ2 ROC curve are always closer to the

top left corner in comparison with the K-S curve.

Our experimental results thus suggest that the chi-square
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Fig. 7. Comparison between an offline and a time-limited (10s) χ2 detection.

detection is better than the K-S detection to efficiently detect

Skype flows in Web traffic using our methodology. Therefore,

considering the experimental results for the chi-square detec-

tion shown in Figure 5, our methodology provides enough

flexibility for the network management to adopt different

approaches regarding the possible detection of Skype flows in

Web traffic. At the one hand, if one wants a Skype detection

system with few false positive errors (i.e. a conservative

approach), one may choose the thresholds used to generate

a point near the Y axis at the expense of a reduced detection

rate. At the other hand, if one wants to capture almost all

true positives (i.e. a loose classification), one may choose the

thresholds used in a point near the top axis at the expense of

a higher false positive rate.

B. Evaluating real-time detection

The results obtained in previous section were all based

on a offline analysis of captured data. However, a network

administrator may want to identify the Skype calls that are

currently using the network, not the Skype calls made some

minutes or hours ago. In this section, we evaluated our

algorithm performance taken into account time constraints.

The methodology proposed for a real-time detection depends

on the same training data but differs in the detection part:

this time the data is captured and analyzed using short time

intervals. We chose 10 seconds as a reasonable time interval

between updates for our detection tool. Skype calls are usually

larger than that and network administrators can wait that long

for receiving updated information.

For an evaluation, we generated a new test dataset to simu-

late a real-time detection. We extracted from test traces ISP-3

and ISP-4 a total of 125 capture files with 10 seconds each.

These 125 capture files were not contiguous, but separated

with various time intervals in order to get different Skype flows

in each capture file. After the generation of these files, we

manually identified all Skype flows present in them to serve as

reference for our detection, counting 115 flows. We launched

the χ2 detection tool used in previous section to generate a

new ROC curve. The only modification in our software was a



lower limit for the number of requests present in a flow. Given

the small size of capture files, we calculated parameters for

every flow with more than 10 requests. The χ2 ISP-3 detection

curve was recalculated after this modification for comparison

and the results of our evaluation are shown in Figure 7.

We observe in Figure 7 that the χ2 detection using the

newly generated trace (the set of all 10s capture files) had

a true positive rate up to 85% with a smaller number of

false positives compared to the χ2 detection using the ISP-

3 trace. Beyond this point, the number of false positives

grows significantly, and the χ2 ISP-3 combination had more

accurate results than the χ2 10s analysis. The time needed to

analyse each captured file was insignificant compared to the

10s interval and we used a standard computer for this job. This

result suggests that this approach with a 10 seconds time bin

can be sufficient for detection, but we can expect some Skype

flows to be not distinguishable from Web flows. With a larger

time bin, the curve is expected to approach the χ2 ISP-3 or

ISP-4 results, given that the 10s trace is derived from both.

VI. CONCLUSIONS

Skype software became very popular in recent years. One

of the causes of its success is the high adaptivity provided

by the software to operate behind firewalls, proxies or other

network elements. Web browsing traffic is a “must-have”

service for many institutions and enterprises connected to the

Internet. Therefore, it is rather common to find non-HTTP

traffic using Web ports to delude firewalls and other network

elements. In this paper, we evaluated a Skype detection system

based on statistical tests to efficiently detect Skype flows

hidden among Web traffic using real-world data gathered at a

commercial Internet Service Provider (ISP) and an academic

institution. Important features of the proposed Skype detection

system include its capacity of detecting Skype traffic without a

search for particular Skype patterns or signatures and without

regarding payload information. We aim to build a program to

detect traffic regardless of Skype version, and difficult to be

deluded in newer Skype versions.

Based on a training experimental dataset, we characterize

real Web flows to build empirical distributions to represent

the “normal” behavior of Web traffic. We manually produced

Skype traffic to build our Web evaluation dataset and verify

that the proposed metrics are able to identify Skype flows

hidden among HTTP traffic. Using two simple Goodness-of-

Fit tests, the χ2 statistic and the Kolmogorov-Smirnov test, we

show that Skype flows can be clearly detected, but our results

suggests that the χ2 test is a much better choice.

Our results are dependent on a training dataset but Figures

1, 2 and 3 suggest that the same set of empirical distributions

can be used for several weeks and even for other institutions.

Figure 7 suggests that our real-time proposal is feasible and it

can achieve good results compared to our original methodol-

ogy. As future work, we intend to further analyze the real-time

detection by investigating the minimum time interval needed to

achieve 100% of Skype flow detection with a reasonable false

positive rate. We also intend to build and evaluate an optimized

version of our tool to perform real-time monitoring in network

links. The proposed HTTP workload model can be seen as a

building block to the development of an automatic detection

system of other kind of non-HTTP flows hidden in Web traffic,

such as P2P file sharing and media streaming applications. In

future work, we plan to investigate this possible generalization

of our current Skype detection method and the validity of the

training dataset.
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