An Analysis of the Skype Peer-to-Peer Internet Telephony Protocol

Paper by: Salman Baset and Henning Schulzrinne, Columbia University, New York

Presentation by: Ariane Keller 27.11.06

Introduction

- Skype: peer-to-peer VoIP client developed in 2003 by organisation that created Kazaa
- Skype is not an open protocol
- Analysed Version
 - 1.4.0.84 for windows (current version: 2.5.0.151)
 - 1.2.0.18 for Linux (current version: 1.3.0.53)

Skype Network

- SC: Skype client
- SN: Super node
 - Skype client that has further responsibilities, each SC has to connect to an SN for a successful login

- Login server
 - Central entity responsible for user authentication

Key components

- Ports
 - Random TCP and UDP listening port
 - TCP listening ports at port 80 (http) and 443 (https)
- HC: Host cache
 - Each SC maintains a list of available SN (IP addresses with ports)
- Buddy list
 - Contact list, stored in a xml file on the local computer and on a central server

Key components

- Encryption (explanation by Skype)
 - Each packet encrypted
 - AES, 256-bit encryption
 - RSA to negotiate AES keys
 - User public key certified by RSA certificates at login
- NAT, Firewall
 - Skype determines and stores whether it is behind a NAT or firewall
 - Variation of STUN and TURN Protocols

Experimental Setup

- 3 different Network setups:
 - 2 SC on machines with public IP addresses and no firewalls
 - 1 SC behind port-restricted NAT,
 1 SC with public IP address
 - Both SC behind port-restricted NAT and UDP restricted firewall
- Ethereal is used to monitor network traffic
- Shared library and system call redirection on Linux

Skype Function Analysis: Start up

• The first time after installation an http 1.1 GET message is sent to skype.com with keyword 'installed'.

Skype Function Analysis: Login

- Experiment 1: clear the HC and override connect() and sendto() to return always false
- Experiment 2: fill HC with one invalid entry and observe login process
- Experiment 3: clear HC and allow all traffic

Skype Function Analysis: Login

Login Server

- 2 IP addresses
- Only central component of Skype network
- Ensures that Skype user names are unique
- Located in Denmark and Netherlands
- Buddy list is hosted on login server
- SC receives IP of Login Server from a SN

Login Process Time

- Measure login time for the 3 network setups
 - public IP addresses and port restricted NAT:
 3 7 seconds
 - UDP restricted firewall: 35 seconds (after sending UDP packets to 20 SN a TCP connection is established)
- Analysis of subsequent logins
 - Login time for UDP restricted firewall decreased to 5 to 10 seconds -> Skype stores its last connectivity information

Login Messages

- First and second message always identical
 - Payload 22 3 1 0 0 for the SC -> server packet
 - Payload 23 3 1 0 0 for the server -> SC packet
 - SSL uses similar patterns
- Messages 3 and 4 different for each login attempt
 - 4 byte common header
 - Length fields to indicate message length and location of next headers

Blocking Skype Login

- Experiment 1: block IP of login server
 - Login attempt succeeded
- Experiment 2: block alternative IP addresses
 - Login attempt succeeded
- Experiment 3: block all packets which include byte sequence 22 3 1 0 (this pattern occurs in every login attempt)
 - Login attempt failed

Skype Function Analysis: User Search

- Analysis-Problem: Packets are encrypted and cannot be traced behind a SN
- Global Index technology (Information of users are stored in a distributed way on the SN)
- Skype claims that it will find each user if it has logged in during the last 72 hours
- No details could be found on how search is performed

Skype Function Analysis: User Search

- For SC behind a UDP restricted Firewall the search is performed by the SN
- Search results are cashed on intermediate nodes
- Login server used as fall back (for non-existent user-names login server was always contacted)
- Wildcard searches do not return identical results on different machines

Skype Function Analysis: Call Establishment

- Caller and callee on public IP addresses
 - TCP signalling between caller and callee SC
 - Caller sends also some UDP packets to other online Skype nodes
- Caller behind port restricted NAT, callee on public IP address
 - TCP signalling packets routed over other Skype node
 - UDP media packets routed directly
- Caller and callee behind UDP restricted firewall
 - TCP signalling over other Skype node
 - Voice packets are transmitted over TCP

Media Transfer and Codecs

- Media transfer preferably over UDP
- Roughly 85 voice packets exchanged both ways in 1 second
- Payload size of voice packet: 40 to 120 bytes
- No silence suppression (if no data needs to be transferred packets are still sent)
 - Maintains UDP binding at NAT
 - Avoid to drop TCP congestion window size
- Calls on hold: send UDP voice packets and TCP signalling packets in regular intervals
- Frequency range: 50Hz 8000Hz
- Congestion: minimum bandwidth required: 2 kilobytes/second

Conferencing

4+B

- Experimental setup:
 - 3-way conferencing
 - "A" always public IP
 - Different connection setup scenarios
- Results:
 - No full mesh conferencing
 - "A" always mixed the packets
- Exception
 - "B" and "C" communicate via relay "D" and then
 "A" joins the conference: Data flows still over "D".

A+C

В

Other experiments

- Skype allows user to log in form multiple machines simultaneously
 - Calls are routed to all location and upon picking a call they are immediately cancelled at the other locations
- Skype super nodes cannot be "generated"
 - If an ordinary skype node "A" is the only entry in the HC, a connection will be established to the super node of "A"
- If two SC are behind same NAT voice traffic flows directly over the private network

Comparison of Skype, Yahoo, MSN, Google Talk volP Applications

TABLE III Skype, yahoo, msn and google talk comparison

	Application version	Memory Usage before call (caller, callee)	Memory Usage during call (caller, callee)	Process priority before call	Process priority during call	Mouth-to-ear latency	Latency Standard Deviation
Skype	1.4.0.84	19 MB, 19 MB	21 MB, 27 MB	Normal	High	96 ms	4
Yahoo	7.0.0.437	38 MB, 34 MB	43 MB, 42 MB	Normal	Normal	152 ms	12
MSN	7.5	25 MB, 22 MB	34 MB, 31 MB	Normal	Normal	184 ms	16
G-Talk	1.0.0.80	9 MB, 9 MB	13 MB, 13 MB	Normal	Normal	109 ms	10

Skype Super Node Map

- Approximately 8000 logins were performed
- Each Super Node (approx. 900) involved was registered
- Using MaxMind the position of each SN was determined

Summary

- Analysis of the Skype protocol with the following approaches:
 - Change and observation of the entries in the Host Cache
 - Observation of the network traffic generated by Skype using Ethereal
 - Shared library and system call interception techniques
- Results:
 - Some insight in the login process
 - Comparison of VoIP applications
 - Super Node map

Conclusion

Since Skype relays on super nodes and since they need to have a certain bandwidth, the hole system would collapse if all Skype clients decided to put a bandwidth limitation on their Skype application.

Oserving the network traffic is not enough to get good knowledge of the Skype protocol, since it is an encrypted and proprietary protocol.