
VoIP:
Skype architecture &
complete call setup

Seminar 2

By:

Prateek Arora

Abstract

• Skype is a peer-to-peer VoIP client developed by KaZaa
in 2003.

• The call-setup and routing is all handled behind the
scene by Peer-to-Peer technology acquired from JoltID
[http://www.joltid.com] – founded by Mr. Niklas
Zennström who was one of the original founders of
Kazaa and also is a founder of Skype.

• Skype claims that it can work almost seamlessly across
NATs and firewalls and has better voice quality than the
MSN and Yahoo IM applications.

• It encrypts calls end-to-end, and stores user information
in a decentralized fashion. Skype also supports instant
messaging and conferencing.

Skype Architecture

• Like its file sharing predecessor KaZaa, Skype is an
overlay peer-to-peer network.

• There are two types of nodes in this overlay network,
ordinary hosts and super nodes (SN).

• An ordinary host is a Skype application that can be
used to place voice calls and send text messages.

• A super node is an ordinary host’s end-point on the
Skype network. Any node with a public IP address
having sufficient CPU, memory, and network
bandwidth is a candidate to become a super node.

Skype Architecture (contd.)

• An ordinary host must connect to a super
node and must register itself with the Skype
login server for a successful login.

• The Skype login server is an important entity in
the Skype network. User names and passwords
are stored at the login server.

• User authentication at login is also done at this
server.

• This server also ensures that Skype login names
are unique across the Skype name space.

Skype Architecture (contd.)

Apart from the login server, there is no central server in the Skype network.
Online and offline user information is stored and propagated in a
decentralized fashion and so are the user search queries.

Protocols & Traffic Traversals

• NAT and firewall traversal are important Skype functions.
• Each Skype node uses a variant of STUN protocol to

determine the type of NAT and firewall it is behind.
• There is no global NAT and firewall traversal server

because if there was one, the Skype node would have
exchanged traffic with it during login and call
establishment.

• The Skype network is an overlay network and thus
each Skype client (SC) should build and refresh a table
of reachable nodes. In Skype, this table is called host
cache (HC) and it contains IP address and port
number of super nodes.

Technology & Codecs Used

• Skype claims to have implemented a ‘3G P2P’
or ‘Global Index’ technology, which is
guaranteed to find a user if that user has logged
in the Skype network in the last 72 hours.

• Skype uses wideband codecs which allows it to
maintain reasonable call quality at an available
bandwidth of 32 kb/s. It uses TCP for signaling,
and both UDP and TCP for transporting
media traffic.

• Signaling and media traffic are not sent on the
same ports.

Key Components

• A Skype client listens on particular ports
for incoming calls, maintains a table of
other Skype nodes called host cache,
uses wideband codecs, maintains a
buddy list, encrypts messages end-to-
end, and determines if it is behind a NAT
or a firewall.

Ports

• A Skype client (SC) opens a TCP and a UDP
listening port at the port number configured in its
connection dialog box.

• SC randomly chooses the port number upon
installation.

• In addition, SC also opens TCP listening ports at
port number 80 (HTTP port), and port number
443 (HTTPS port).

• Unlike many Internet protocols, like SIP and
HTTP, there is no default TCP or UDP listening
port.

Supernodes & Host Cache

• The host cache (HC) is a list of super node IP address
and port pairs that SC builds and refreshes regularly. It is
the most critical part to the Skype operation. At least one
valid entry must be present in the HC. A valid entry is an
IP address and port number of an online Skype node.

• A SC stores host cache in the Windows registry at
HKEY_CURRENT_USER / SOFTWARE / SKYPE /
PHONE / LIB / CONNECTION / HOSTCACHE and in
the file “shared.xml” for each Skype node.

• After running a SC for two days, it was observed that HC
contained a maximum of 200 entries.

• Host and peer caches are not new to Skype. Chord,
another peer-to-peer protocol has a finger table, which it
uses to quickly find a node.

Supernodes & Host Cache (contd.)

Supernodes & Host Cache (contd.)

A typical “shared.xml”

Supernodes & Host Cache (contd.)

• It was found that the Skype application only makes TCP-
connections with a few of the hosts above, the rest are contacted
with an UDP-connections.

• This could mean that only some of those contacted with TCP are
supernodes and the rest possibly are only peers connected to the
same supernodes as the Skype application client.

• It is also unclear how the list above is compiled:
An uninstall of Skype leaves the file
C:\Documents And Settings\All Users\Application Data\Skype\
shared.xml
seemingly untouched.

When manually deleted it is reconstructed when a new copy of the
Skype application is installed.

Supernodes & Host Cache (contd.)

• One could speculate whether this list is
dynamically downloaded from the Skype
servers or not.

• When sniffing the conversation from the
Skype application with Ethereal there are
only two brief initial connections to the
Skype backend servers.

Supernodes & Host Cache (contd.)

Nowhere in the trace could the data in the HostCache section of the
shared.xml file be seen, but immediately after the connection above was
finished, the locally installed Skype Application client started to send UDP-
packets to hosts in that very list.
This seems to indicate that some potions of the list is hardcoded into the
application itself, but this is unclear as there are no officially technical
documentation that covers the internal workings of Skype.

Importance of Supernodes

• The importance of the supernodes seems quite clear
though, since all call-handling is seemingly done by
supernodes.

• Since the end-user have no way of influencing which
supernode the Skype application connects to or even if
the end-users computer itself is promoted to a
supernode there are no easy steps for running the Skype
application confined to a particular network say a
corporate network.

• At some point the Skype application clients inside the
network must connect to external entities, both the
centrally managed Skype back-end servers, but also to a
arbitrary supernode which in most cases is some other
Skype application end-user.

Codecs

• The white paper “Skype conferencing white paper by
PowerModeling:
http://www.powermodeling.com/files/whitepapers/Co
nference%20Test%20feb%2009.pdf” observes that
Skype uses iLBC, iSAC, or a third unknown codec.

• GlobalIPSound has implemented the iLBC and iSAC
codecs and their website lists Skype as their partner.

• When measured it was found that the Skype codecs
allow frequencies between 50-8,000 Hz to pass
through. This frequency range is the characteristic of a
wideband codec.

Buddy List

• Skype stores its buddy information in the
Windows registry.

• Buddy list is digitally signed and
encrypted.

• The buddy list is local to one machine
and is not stored on a central server.

• If a user uses SC on a different machine
to log onto the Skype network, that user
has to reconstruct the buddy list.

Encryption

• Skype uses AES (Advanced Encryption
Standard), also known as Rijndel. It is also used
by U.S. Government organizations to protect
sensitive information.

• Skype uses 256-bit encryption, which has a total
of 1.1 x 1077 possible keys, in order to actively
encrypt the data in each Skype call or instant
message.

• Skype uses 1536 to 2048 bit RSA to negotiate
symmetric AES keys.

• User public keys are certified by Skype server at
login.

NAT and Firewall

• It is observed that SC uses a variation of the
STUN, and TURN protocols to determine the
type of NAT and firewall it is behind.

• It is also observed that SC refreshes this
information periodically.

• This information is also stored in the Windows
registry.

• Unlike its file sharing counter part KaZaa, a SC
cannot prevent itself from becoming a super
node.

Experimental Setup
• The details about Skype functions were found by making an experimental setup by

the author of the paper “An Analysis of the Skype Peer-to-Peer Internet
Telephony Protocol”.

• All experiments were performed for Skype version 0.97.0.6. Skype was installed on
two Windows 2000 machines. One machine was a Pentium II 200MHz with 128 MB
RAM, and the other machine was a Pentium Pro 200 MHz with 128 MB RAM. Each
machine had a 10/100 Mb/s Ethernet card and was connected to a 100 Mb/s network.
The experiments were performed under three different network setups.

• In the first setup, both Skype users were on machines with public IP addresses; in the
second setup, one Skype user was behind port-restricted NAT; in the third setup, both
Skype users were behind a port-restricted NAT and UDP-restricted firewall. NAT and
firewall machines ran Red Hat Linux 8.0 and were connected to 100 Mb/s Ethernet
network.

• Ethereal and NetPeeker were used to monitor and control network traffic,
respectively. NetPeeker was used to tune the bandwidth so as to analyze the Skype
operation under network congestion.

• For each experiment, the Windows registry was cleared of any Skype entries and
Skype was reinstalled on the machine. All experiments were performed between
February and April, 2004.

Skype Functions

Skype functions can be classified into:

1. Startup

2. Login

3. User search

4. Call establishment and tear down

5. Media transfer

6. Presence messages

Startup

• When SC was run for the first time after
installation, it sent a HTTP 1.1 GET request to
the Skype server (skype.com).

• The first line of this request contains the
keyword ‘installed’.

• During subsequent startups, a SC only sent a
HTTP 1.1 GET request to the Skype server
(skype.com) to determine if a new version is
available.

• The first line of this request contains the
keyword ‘getlatestversion’.

Login

• Login is perhaps the most critical function to the
Skype operation.

• It is during this process a SC authenticates its
user name and password with the login server,
advertises its presence to other peers and its
buddies, determines the type of NAT and firewall
it is behind, and discovers online Skype nodes
with public IP addresses.

• It was observed that these newly discovered
nodes were used to maintain connection with the
Skype network should the SN to which SC was
connected became unavailable.

Login Process

Login Process (contd.)
• The HC must contain a valid entry for a SC to be able to connect to the

Skype network. If the HC was filled with only one invalid entry, SC could not
connect to the Skype network and reported a login failure.

• To understand and gain useful insights in the Skype login process by
observing the message flow between SC and this invalid HC entry. The
experimental setup and observations for the login process are described
below:

• First, we flushed the SC host cache and filled it with only one entry which
was the IP address and port number of a machine on which no Skype client
was running.

• The SC was then started and a login attempt was made. Since HC had an
invalid entry, SC could not connect to the Skype network. We observed that
the SC first sent a UDP packet to this entry. If there was no response after
roughly five seconds, SC tried to establish a TCP connection with this entry.
It then tried to establish a TCP connection to the HC IP address and port 80
(HTTP port). If still unsuccessful, it tried to connect to HC IP address and
port 443 (HTTPS port). SC then waited for roughly 6 seconds. It repeated
the whole process four more times after which it reported a login failure.

Login Process (contd.)

• It was observed that a SC must establish a TCP
connection with a SN in order to connect to the
Skype network. If it cannot connect to a super
node, it will report a login failure.

• Most firewalls are configured to allow outgoing
TCP traffic to port 80 (HTTP port) and port 443
(HTTPS port). A SC behind a firewall, which
blocks UDP traffic and permits selective TCP
traffic, takes advantage of this fact. At login, it
establishes a TCP connection with another
Skype node with a public IP address and port 80
or port 443.

Login Server
• After a SC is connected to a SN, the SC must authenticate the user

name and password with the Skype login server.
• The login server is the only central component in the Skype

network. It stores Skype user names and passwords and ensures
that Skype user names are unique across the Skype name space.

• SC must authenticate itself with login server for a successful login.
• It was observed during the experiments that SC always exchanged

data over TCP with a node whose IP address was 80.160.91.11.
• It was since then believed that this node is the login server.
• A reverse lookup of this IP address retrieved NS records whose

values are ns14.inet.tele.dk and ns15.inet.tele.dk. It thus appears
from the reverse lookup that the login server is hosted by an ISP
based in Denmark.

Bootstrap Super Nodes
• After logging in for the first time after installation, HC was initialized with seven IP address and

port pairs.
• It was observed that upon first login, HC was always initialized with these seven IP address and

port pairs except for a rare random occurrence. In the case where HC was initialized with more
than seven IP addresses and port pairs, it always contained those seven IP address and port
pairs.

• It was with one of these IP address and port entries a SC established a TCP connection when a
user used that SC to log onto the Skype network for the first time after installation. We call these
IP address and port pairs bootstrap super nodes.

• These IP address and port pairs and their corresponding host names obtained using a reverse
lookup are:
IP address : port Reverse lookup result
66.235.180.9:33033 sls-cb10p6.dca2.superb.net
66.235.181.9:33033 ip9.181.susc.suscom.net
80.161.91.25:33033 0x50a15b19.boanxx15.adsl-dhcp.tele.dk
80.160.91.12:33033 0x50a15b0c.albnxx9.adsl-dhcp.tele.dk
64.246.49.60:33033 rs-64-246-49-60.ev1.net
64.246.49.61:33033 rs-64-246-49-61.ev1.net
64.246.48.23:33033 ns2.ev1.net

• From the reverse lookup, it appears that bootstrap SNs are connected to the Internet through four
ISPs: Superb, Suscom, and ev1.net are US-based ISPs.

Bootstrap Super Nodes

• After installation and first time startup, it was
observed that the HC was empty. However upon
first login, the SC sent UDP packets to at least
four nodes in the bootstrap node list. Thus,
either bootstrap IP address and port information
is hard coded in the SC, or it is encrypted and
not directly visible in the Skype Windows
registry, or this is a one-time process to contact
bootstrap nodes.

• It was also observed that if the HC was flushed
after the first login, SC was unable to connect to
the Skype network.

First-time Login Process

Message flow for the first login after installation for SC on a public IP address. ‘B’ stands for bytes and ‘N’ stands for node. SYN and ACK
packets are shown to indicate who initiated TCP connection. Message flows are not strictly according to time. Messages have been
grouped together to provide a better picture. Message size corresponds to size of TCP or UDP payload. Not all messages are shown.

First-time Login Process (contd.)

• The SC host cache was empty upon installation. Thus, a SC must connect
to well known Skype nodes in order to log on to the Skype network. It does
so by sending UDP packets to some bootstrap super nodes and then waits
for their response over UDP for some time. It is not clear how SC selects
among bootstrap SNs to send UDP packets to.

• SC then established a TCP connection with the bootstrap super node that
responded. Since more than one node could respond, a SC could establish
a TCP connection with more than one bootstrap node. A SC, however,
maintains a TCP connection with at least one bootstrap node and may close
TCP connections with other nodes.

• After exchanging some packets with SN over TCP, it then perhaps acquired
the address of the login server (80.160.91.11). SC then establishes a TCP
connection with the login server, exchanges authentication information with
it, and finally closes the TCP connection.

• The initial TCP data exchange with the bootstrap SN and the login server
shows the existence of a challenge-response mechanism. The TCP
connection with the SN persisted as long as SN was alive. When the SN
became unavailable, SC establishes a TCP connection with another SN.

NAT and Firewall Determination
• It is observed that a SC is able to determine at login if it is behind a

NAT and firewall. It is assumed that there are at least two ways in
which a SC can determine this information.

• One possibility is that it can determine this information by
exchanging messages with its SN using a variant of the STUN
protocol.

• The other possibility is that during login, a SC sends and possibly
receives data from some nodes after it has made a TCP connection
with the SN.

• It is observed that at this point, SC uses its variation of STUN
protocol to determine the type of NAT or firewall it is behind. Once
determined, the SC stores this information in the Windows registry.
It is also observed that SC refreshes this information periodically.

• However, it is not clear on how often a SC refreshes this information
since Skype messages are encrypted.

Alternate Node Table
• Skype is a P2P client and P2P networks are very dynamic. SC,

therefore, must keep track of online nodes in the Skype network so
that it can connect to one of them if its SN becomes unavailable.

• From the experiments done, it can be seen that SC sends UDP
packets to 22 distinct nodes at the end of login process and possibly
receives a response from them if it is not behind a UDP-restricted
firewall.

• It is assumed that SC uses those messages to advertise its arrival
on the network. It is also assumed that upon receiving a response
from them, SC builds a table of online nodes. The author of this
paper calls this table alternate node table.

• It is with these nodes a SC can connect to, if its SN becomes
unavailable. The subsequent exchange of information with some of
these nodes during call establishment confirms that such a table is
maintained.

Subsequent Login Process

• The subsequent login process was quite similar to the
first-time login process. The SC built a HC after a user
logged in for the first time after installation. The HC got
periodically updated with the IP address and port number
of new peers.

• During subsequent logins, SC used the login algorithm to
determine at least one available peer out of the nodes
present in the HC.

• It then established a TCP connection with that node.
• It was also observed that during subsequent logins, SC

did not send any ICMP packets.

Login Process Time
• As per the experiments performed, the time to login was measured

on the Skype network for the three different network setups as
described in Experimental Setup earlier.

• For this experiment, the HC already contained the maximum of two
hundred entries.

• The SC with a public IP address and the SC behind a port-
restricted NAT took about 3-7 seconds to complete the login
procedures.

• The SC behind a UDP-restricted firewall took about 34 seconds
to complete the login process.

• For SC behind a UDP-restricted firewall, it was observed that it sent
UDP packets to its thirty HC entries. At that point it concluded that it
is behind UDP-restricted firewall. It then tried to establish a TCP
connection with the HC entries and was ultimately able to connect to
a SN.

User Search
• Skype uses its Global Index (GI) technology to search for a user.

Skype claims that search is distributed and is guaranteed to find a
user if it exists and has logged in during the last 72 hours.

• Extensive testing suggests that Skype was always able to locate
users who logged in using public or private IP address in the last 72
hours.

• Skype is a not an open protocol and its messages are encrypted.
Whereas in login we were able to form a reasonably precise opinion
about different entities involved, it is not possible to do so in search,
since we cannot trace the Skype messages beyond a SN.

• Also, we were unable to force a SC to connect to a particular SN.
Nevertheless, it was observed and following are search message
flows for the three different experimental network setups.

User Search (contd.)

Message flow for user
search when SC has a
public IP address. ‘B’
stands for bytes and ‘N’
stands for node. Message
sizes correspond to
payload size of TCP or
UDP packets.

Message flow for user
search when SC is
behind a port-restricted
NAT. ‘B’ stands for bytes
and ‘N’ stands for node.
UDP packets were sent
to N1, N2, N3, and N4
during login process and
responses were received
from them. Message size
corresponds to payload
size of TCP or UDP
packets.

User search by a SC
behind a UDP-restricted
firewall. ‘B’ stands for
bytes. Data is exchanged
with SN only. Message
size corresponds to
payload size of TCP/UDP
packets.

User Search (contd.)
• A SC has a search dialog box. After entering the Skype user id and

pressing the find button, SC starts its search for a particular user.
• For SC on a public IP address, SC sent a TCP packet to its SN. It

appears that SN gave SC the IP address and port number of four
nodes to query, since after that exchange with SN, SC sent UDP
packets to four nodes.

• It was also observed that SC had not exchanged any information
with these four nodes during login. SC then sent UDP packets to
those nodes. If it could not find the user, it informed the SN over
TCP. It appears that the SN now asked it to contact eight different
nodes, since SC then sent UDP packets to eight different nodes.

• This process continued until the SC found the user or it determined
that the user did not exist.

• On average, SC contacted eight nodes. The search took three to
four seconds. We are not clear on how SC terminates the search if
it is unable to find a user.

User Search (contd.)

• A SC behind a port-restricted NAT exchanged data
between SN, and some of the nodes which responded to
its UDP request during login process as shown in the
corresponding message flow figure before.

• A SC behind a port-restricted NAT and UDP-
restricted firewall sent the search request over TCP to
its SN. It is believed that SN then performed the search
query and informed SC of the search results.

• Unlike user search by SC on a public IP address, SC did
not contact any other nodes. This suggests that SC
knew that it was behind a UDP-restricted firewall. The
message flow figure for UDP-restricted firewall is given
earlier.

Call Establishment
• We consider call establishment for the three experimental network setups.

Further, for each setup, we consider call establishment for users that are in
the buddy list of caller and for users that are not present in the buddy list. It
is important to note that call signaling is always carried over TCP.

• For users that are not present in the buddy list, call placement is equal to
user search plus call signaling. Thus, we discuss call establishment for the
case where callee is in the buddy list of caller.

• If both users were on public IP addresses, online and were in the buddy list
of each other, then upon pressing the call button, the caller SC established
a TCP connection with the callee SC.

• Signaling information was exchanged over TCP. The initial exchange of
messages between caller and callee indicates the existence of a challenge-
response mechanism.

• The caller also sent some messages (not shown in Figure) over UDP to
alternate Skype nodes, which are online Skype nodes discovered during
login. For this scenario, three kilobytes of data was exchanged.

Call Establishment (contd.)

Call Establishment (contd.)
• In the second network setup, where the caller was behind port-

restricted NAT and callee was on public IP address, signaling and
media traffic did not flow directly between caller and callee. Instead,
the caller sent signaling information over TCP to an online Skype
node which forwarded it to callee over TCP. This online node also
routed voice packets from caller to callee over UDP and vice versa.
The message flow is shown in the corresponding Figure earlier.

• For the third setup, in which both users were behind port-restricted
NAT and UDP-restricted firewall, both caller and callee SC
exchanged signaling information over TCP with another online
Skype node. Caller SC sent media over TCP to an online node,
which forwarded it to callee SC over TCP and vice versa. The
message flow is shown in the corresponding Figure earlier.

Tear Down

• During call tear-down, signaling information is
exchanged over TCP between caller and callee if they
are both on public IP addresses, or between caller,
callee and their respective SNs. The messages observed
for call tear down between caller and callee on public IP
addresses are shown in following figure.

• For the second, and third network setups, call tear down
signaling is also sent over TCP. We, however, do not
present these message flows, as they do not provide any
interesting information.

Media Transfer and Codecs
• If both Skype clients are on public IP address, then media traffic flowed directly between them

over UDP. The media traffic flowed to and from the UDP port configured in the options dialog
box.

• The size of voice packet was 67 bytes, which is the size of UDP payload. For two users
connected to Internet over 100 Mb/s Ethernet with almost no congestion in the network, roughly
140 voice packets were exchanged both ways in one second. Thus, the total uplink and downlink
bandwidth used for voice traffic is 5 kilobytes/s. This bandwidth usage corresponds with the
Skype claim of 3-16 kilobytes/s.

• If either caller or callee or both were behind port-restricted NAT, they sent voice traffic to another
online Skype node over UDP. That node acted as a media proxy and forwarded the voice traffic
from caller to callee and vice versa. The voice packet size was 67 bytes, which is the size of UDP
payload. The bandwidth used was 5 kilobytes/s.

• If both users were behind port-restricted NAT and UDP-restricted firewall, then caller and callee
sent and received voice traffic over TCP from another online Skype node. The TCP packet
payload size for voice traffic was 69 bytes. The total uplink and downlink bandwidth used for
voice traffic is about 5 kilobytes/s.For media traffic, SC used TCP with retransmissions.

• The Skype protocol seems to prefer the use of UDP for voice transmission as much as possible.
The SC will use UDP for voice transmission if it is behind a NAT or firewall that allows UDP
packets to flow across.

Congestion Metric

• Skype call quality was checked in a low
bandwidth environment by using Net Peeker to
tune the upload and download bandwidth
available for a call.

• It was observed that uplink and downlink
bandwidth of 2 kilobytes/s each was necessary
for reasonable call quality.

• The voice was almost unintelligible at an uplink
and downlink bandwidth of 1.5 kilobytes/s.

Keep-alive Messages

It was observed in for three different
network setups that the SC sent a refresh
message to its SN over TCP every 60s.

Pros & Cons of Node Route
There are many advantages of having a node route the voice
packets from caller to callee and vice versa, as follows:

Pros:
1) It provides a mechanism for users behind NAT and firewall to talk

to each other.
2) If users behind NAT or firewall want to participate in a conference,

and some users on public IP address also want to join the
conference, this node serves as a mixer and broadcasts the
conferencing traffic to the participants.

Cons:
1) There will be a lot of traffic flowing across this node.
2) Users generally do not want that arbitrary traffic should flow

across their machines.

Conclusion
• Skype is the first VoIP client based on peer-to-peer technology.

There are three factors are responsible for its increasing popularity.
• First, it provides better voice quality than MSN and Yahoo IM clients;

second, it can work almost seamlessly behind NATs and firewalls;
and third, it is extremely easy to install and use.

• It is believed that Skype client uses its version of STUN protocol to
determine the type of NAT or firewall it is behind. The NAT and
firewall traversal techniques of Skype are similar to many existing
applications such as network games.

• It is by the random selection of sender and listener ports, the use of
TCP as voice streaming protocol, and the peer-to-peer nature of the
Skype network, that not only a SC traverses NATs and firewalls but
it does so withhout any explicit NAT or firewall traversal server.

• Skype uses TCP for signaling. It uses wide band codecs and has
probably licensed them from GlobalIPSound. Skype communication
is encrypted end-to-end.

References

• www.google.co.in
• www.skype.com

• http://arxiv.org/ftp/cs/papers/0412/0412017.pdf
• http://www.mathaba.net/MNN/www.skype-news.com/zAnalysisCorp.pdf
• http

://voipsa.org/pipermail/voipsec_voipsa.org/2005-October/000812.html
• http://www1.cs.columbia.edu/~salman/skype/index.html

http://www.google.co.in/
http://www.skype.com/
http://arxiv.org/ftp/cs/papers/0412/0412017.pdf
http://www.mathaba.net/MNN/www.skype-news.com/zAnalysisCorp.pdf
http://voipsa.org/pipermail/voipsec_voipsa.org/2005-October/000812.html
http://voipsa.org/pipermail/voipsec_voipsa.org/2005-October/000812.html
http://www1.cs.columbia.edu/~salman/skype/index.html

	VoIP: Skype architecture & complete call setup Seminar 2
	Abstract
	Skype Architecture
	Skype Architecture (contd.)
	Slide 5
	Protocols & Traffic Traversals
	Technology & Codecs Used
	Key Components
	Ports
	Supernodes & Host Cache
	Supernodes & Host Cache (contd.)
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Importance of Supernodes
	Codecs
	Buddy List
	Encryption
	NAT and Firewall
	Experimental Setup
	Skype Functions
	Startup
	Login
	Login Process
	Login Process (contd.)
	Slide 27
	Login Server
	Bootstrap Super Nodes
	Slide 30
	First-time Login Process
	First-time Login Process (contd.)
	NAT and Firewall Determination
	Alternate Node Table
	Subsequent Login Process
	Login Process Time
	User Search
	User Search (contd.)
	Slide 39
	Slide 40
	Call Establishment
	Call Establishment (contd.)
	Slide 43
	Tear Down
	Media Transfer and Codecs
	Congestion Metric
	Keep-alive Messages
	Pros & Cons of Node Route
	Conclusion
	References

