An Analysis of the Skype Peer-to-Peer Internet Telephony

Protocol

Salman A. Baset and Henning Schulzrinne
Department of Computer Science
Columbia University, New York NY 10027
{salman,hgs}@cs.columbia.edu

September 15, 2004

ABSTRACT

Skype is a peer-to-peer VolP client developed b¥d&ain 2003.
Skype claims that it can work almost seamlesslgscNATS and
firewalls and has better voice quality than the M&N Yahoo
IM applications. It encrypts calls end-to-end, astdres user
information in a decentralized fashion. Skype akgpports
instant messaging and conferencing.

This report analyzes key Skype functions such g JONAT and
firewall traversal, call establishment, media tfanscodecs, and
conferencing under three different network setufsalysis is
performed by careful study of Skype network traffic

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networkg:
Protocols—Applications

Network

General Terms
Algorithms, Design, Measurement, Performance, Hrparta-
tion, Security,

Keywords
Peer-to-peer (p2p), Voice over IP (VolP), Super &d&N),
Internet telephony, conferencing

1. INTRODUCTION

Skype is a peer-to-peer VolIP client developed b¥d&a[17] that
allows its users to place voice calls and send messsages to
other users of Skype clients. In essence, it iy génilar to the

MSN and Yahoo IM applications, as it has capabditior voice-

calls, instant messaging, audio conferencing, anddp lists.

However, the underlying protocols and techniquesriploys are
quite different.

Like its file sharing predecessor KaZaa, Skypeni®weerlay peer-
to-peer network. There are two types of nodes is tverlay
network, ordinary hosts and super nodes (SN). Alinary host is
a Skype application that can be used to place \lte and send
text messages. A super node is an ordinary hastigeint on the
Skype network. Any node with a public IP addresvifdg
sufficient CPU, memory, and network bandwidth saadidate to
become a super node. An ordinary host must cortneatsuper
node and must register itself with the Skype loggmver for a
successful login. Although not a Skype node its#iE Skype
login server is an important entity in the Skypewwek. User
names and passwords are stored at the login sebissr
authentication at login is also done at this servars server also

ensures that Skype login names are unique acresSkiype name
space. Figure 1 illustrates the relationship betwaeinary hosts,
super nodes and login server.

Apart from the login server, there is no centraveein the Skype
network. Online and offline user information is rew and
propagated in a decentralized fashion and so @&eaiger search
queries.

Skype login
SErVEr

Message exchangs
with the login server
durimg login

[] ordinary host

super node

neighbour relationships in the
Skype natwork

Figure 1. Skype Network. There are three main entiés:
supernodes, ordinary nodes, and the login server.

NAT and firewall traversal are important Skype ftioos. We
believe that each Skype node uses a variant of S[I{)Nrotocol
to determine the type of NAT and firewall it is lredh We also
believe that there is no global NAT and firewaliversal server
because if there was one, the Skype node would &eslganged

traffic with it during login and call establishmeint the many
experiments we performed.

The Skype network is an overlay network and thuzhedkype
client (SC) should build and refresh a table othedle nodes. In
Skype, this table is called host cache (HC) andoittains IP
address and port number of super nodes. It is dstorethe
Windows registry for each Skype node.

Skype claims to have implemented a ‘3G P2P’ or Haldndex’
[2] technology (Section 4.3), which is guaranteedind a user if
that user has logged in the Skype network in tee7a hours.

Skype uses wideband codecs which allows it to ra@int
reasonable call quality at an available bandwidtt8® kb/s. It
uses TCP for signaling, and both UDP and TCP famdporting
media traffic. Signaling and media traffic are senht on the same
ports.

The rest of this report is organized as follows:t®a 2 describes
key components of the Skype software and the Skyieork.

Section 3 describes the experimental setup. Sedtidiscusses
key Skype functions like startup, login, user skarcall

establishment, media transfer and codecs, and rmesgémers.
Flow diagrams based on actual network traffic aseduto

elaborate on the details. Section 5 discusses i@rdieg. Section
6 discusses other experiments.

2. KEY COMPONENTS OF THE SKYPE
SOFTWARE

A Skype client listens on particular ports for intag calls,
maintains a table of other Skype nodes called bashe, uses
wideband codecs, maintains a buddy list, encrymssages end-
to-end, and determines if it is behind a NAT orravfall. This
section discusses these components and functiesalitdetail.

2.1 Ports

A Skype client (SC) opens a TCP and a UDP listepioig at the
port number configured in its connection dialog bd&C
randomly chooses the port number upon installatioraddition,
SC also opens TCP listening ports at port numberHBOTP
port), and port number 443 (HTTPS port). Unlikenménternet
protocols, like SIP [5] and HTTP [6], there is nefault TCP or
UDP listening port. Figure 15 shows a snapshothef $kype
connection dialog box. This figure shows the portsvhich a SC
listens for incoming connections.

2.2 Host Cache

The host cache (HC) is a list of super node IP esidand port
pairs that SC builds and refreshes regularly. thésmost critical
part to the Skype operation. At least one validiembust be
present in the HC. A valid entry is anadBdress and port number
of an online Skype node. A SC stores host cacltleaiwindows
registry at HKEY_CURRENT_USER / SOFTWARE / SKYPE /
PHONE / LIB / CONNECTION / HOSTCACHE. After runniray
SC for two days, we observed that HC contained sirman of
200 entries. Host and peer caches are not new ypeSKkChord
[19], another peer-to-peer protocol has a fingétetawhich it
uses to quickly find a node.

2.3 Codecs

The white paper [7] observes that Skype uses iILECISAC [9],

or a third unknown codec. GloballPSound [10] haplé@mented
the iLBC and iSAC codecs and their website listgpgkas their
partner. We believe that Skype uses their codeteimgntations.
We measured that the Skype codecs allow frequermzbsgeen
50-8,000 Hz to pass through. This frequency rangethie
characteristic of a wideband codec.

2.4 Buddy List

Skype stores its buddy information in the Windovegistry.

Buddy list is digitally signed and encrypted. Thedby list is

local to one machine and is not stored on a ceséraker. If a user
uses SC on a different machine to log onto the Skygtwork,

that user has to reconstruct the buddy list.

2.5 Encryption

The Skype website [13] explains: “Skype uses AE8v@hced
Encryption Standard) — also known as Rijndel — whig also
used by U.S. Government organizations to protecisisee
information. Skype uses 256-bit encryption, whias la total of
1.1 x 1d” possible keys, in order to actively encrypt théada
each Skype call or instant message. Skype usestb53848 bit
RSA to negotiate symmetric AES keys. User publigskare
certified by Skype server at login.”

2.6 NAT and Firewall

We conjecture that SC uses a variation of the STWNand
TURN [18] protocols to determine the type of NATddirewall it
is behind. We also conjecture that SC refreshesittiormation
periodically. This information is also stored inetfiWindows
registry.

Unlike its file sharing counter part KaZaa, a S@Qruzt prevent
itself from becoming a super node.

3. EXPERIMENTAL SETUP

All experiments were performed for Skype versio®700.6.
Skype was installed on two Windows 2000 machinege O
machine was a Pentium || 200MHz with 128 MB RAMdathe
other machine was a Pentium Pro 200 MHz with 128 R¥EM.
Each machine had a 10/10@b/s Ethernet card and was
connected to a 100 Mb/s network.

We performed experiments under three different agtvgetups.
In the first setup, both Skype users were on mashiwith public
IP addresses; in the second setup, one Skype webahind
port-restricted NAT; in the third setup, both Skypsers were
behind a port-restricted NAT and UDP-restrictec\iall. NAT

and firewall machines ran Red Hat Linux 8.0 andensynnected
to 100 Mb/s Ethernet network.

Ethereal [3] and NetPeeker [4] were used to mordtat control
network traffic, respectively. NetPeeker was usedtune the
bandwidth so as to analyze the Skype operation runeevork
congestion.

For each experiment, the Windows registry was etkasf any
Skype entries and Skype was reinstalled on the imach

All experiments were performed between February Apdil,
2004.

4. SKYPE FUNCTIONS

Skype functions can be classified into startupinpgser search,
call establishment and tear down, media transfed, presence
messages. This section discusses each of theraith de

4.1 Startup

When SC was run for the first time after instatlati it sent a
HTTP 1.1 GET request to the Skype server (skype.cbhe first
line of this request contains the keyword ‘insidlle

During subsequent startups, a SC only sent a HTTIPGET
request to the Skype server (skype.com) to deterrfim new
version is available. The first line of this requesntains the
keyword ‘getlatestversion’.

See the Appendix for complete messages.

4.2 Login

Login is perhaps the most critical function to Bleype operation.
It is during this process a SC authenticates iexr umsme and
password with the login server, advertises its gmes to other
peers and its buddies, determines the type of NAT faewall it
is behind, and discovers online Skype nodes witblipulP
addresses. We observed that these newly discoverdes were
used to maintain connection with the Skype netwsirguld the
SN to which SC was connected became unavailable.

4.2.1 Login Process

As discussed in Section 2, the HC must containlid eatry for a
SC to be able to connect to the Skype networkhéf HC was
filled with only one invalid entry, SC could not roeect to the
Skype network and reported a login failure. However gained
useful insights in the Skype login process by olbiegr the
message flow between SC and this invalid HC enfrige
experimental setup and observations for the logiocgss are
described below.

First, we flushed the SC host cache and filled ithvenly one
entry which was the IP address and port numberro&ehine on
which no Skype client was running. The SC was ttarted and
a login attempt was made. Since HC had an invaligye SC
could not connect to the Skype network. We obsethatithe SC
first sent a UDP packet to this entry. If there wasesponse after
roughly five seconds, SC tried to establish a TGRnhection with
this entry. It then tried to establish a TCP cotioecto the HC IP
address and port 80 (HTTP port). If still unsuctidsst tried to
connect to HC IP address and port 443 (HTTPS p8).then
waited for roughly 6 seconds. It repeated the wipoteess four
more times after which it reported a login failure.

We observed that a SC must establish a TCP coonegfith a
SN in order to connect to the Skype network. ffahnot connect
to a super node, it will report a login failure.

Most firewalls are configured to allow outgoing TGRffic to
port 80 (HTTP port) and port 443 (HTTPS port). A Bé€hind a
firewall, which blocks UDP traffic and permits setiee TCP
traffic, takes advantage of this fact. At loginegitablishes a TCP
connection with another Skype node with a publi@atiiress and
port 80 or port 443.

Send UDP
P packet(s) to HC IP
address and port

esponse within
5 seconds

No

v

TCP connection
attempt with HC IP
address and port

Connected Yes

’.

No

h 4
TCP connection Success
attempt with HC IP
address and port 80 A
(HTTP port)

Connected Yes

’«

No

h 4
TCP connection
attempt with HC IP
address and port 443
(HTTPS port)

Connected Yes

*

No

Connection
Attempts == 5

Yes Failure

No
v

Wait for 6 seconds

Figure 2. Skype login algorithm. Only one entrypigsent in the
HC. If there is more than one entry, SC sends UREkgts to
them before attempting a TCP connection. Authetitinawith
the login server is not shown.

4.2.2 Login Server

After a SC is connected to a SN, the SC must atittate the user
name and password with the Skype login server.ld¢jie server

is the only central component in the Skype netwdrkstores
Skype user names and passwords and ensures thae Bkgr
names are unique across the Skype name space. S€ mu

authenticate itself with login server for a suc@@segin. During
our experiments we observed that SC always exclatgi& over
TCP with a node whose IP address was 80.160.9W&1believe
that this node is the login server. A reverse lgolbof this IP
address retrieved NS records whose valuemsid.inet.tele.dk

andnsl5.inet.tele.dk It thus appears from the reverse lookup that

the login server is hosted by an ISP based in Deanma

4.2.3 Bootstrap Super Nodes

After logging in for the first time after installah, HC was
initialized with seven IP address and port pairge dWserved that
upon first login, HC was always initialized withetbe seven IP
address and port pairs except for a rare randonm@we. In the
case where HC was initialized with more than sdf®addresses
and port pairs, it always contained those sevesdti?ess and port
pairs. It was with one of these IP address and g@uatries a SC
established a TCP connection when a user usedSthatio log
onto the Skype network for the first time aftertalistion. We call
these IP address and port pairs bootstrap sup&snéigure 16
shows a snapshot of the host cache of the SC trahios IP
address and port numbers of these bootstrap sugkssnThese
IP address and port pairs and their correspondogf hames
obtained using a reverse lookup are:

connection with the login server, exchanges auibetidn
information with it, and finally closes the TCP cmttion. The
initial TCP data exchange with the bootstrap SN #ral login
server shows the existence of a challenge-respoasbanism.

The TCP connection with the SN persisted as lon@Mswas
alive. When the SN became unavailable, SC estaslishTCP
connection with another SN.

SC 66.235.181.9:33033 (Bootstrap node)
UDP > 18B
[t UDP 11B
UDP P 238
et UDP 11B
SC 80.160.91.12:33033 (Bootstrap node)
UDP P 18B
et UDP 18B

SC makes a TCP connection with
66.235.180.9. This node becomes a SN.

IP address:port

66.235.180.9:33033
66.235.181.9:33033
80.161.91.25:33033
80.160.91.12:33033
64.246.49.60:33033
64.246.49.61:33033
64.246.48.23:33033

Reverse lookup result
sls-cbh10p6.dca2.superb.net
ip9.181.susc.suscom.net
0x50a15b19.boanxx15.adsl-t#emlk
0x50a15b0c.albnxx9.ads|-délepdk
rs-64-246-49-60.evl.net
1s-64-246-49-61.evl.net
ns2.evl.net

From the reverse lookup, it appears that boots®Bis are
connected to the Internet through four ISPs. Sufieth Suscom
[15], evl.net [16] are US-based ISPs.

After installation and first time startup, we obsat that the HC
was empty. However upon first login, the SC senPUiackets to
at least four nodes in the bootstrap node list. sTheither

bootstrap IP address and port information is hadkd in the SC,
or it is encrypted and not directly visible in tB&ype Windows
registry, or this is a one-time process to conbacitstrap nodes.
We also observed that if the HC was flushed afterfirst login,

SC was unable to connect to the Skype network. €hes

observations suggest that we perform separate imgm@s to
analyze the first-time and subsequent login praess

4.2.4 First-time Login Process

The SC host cache was empty upon installation. . TA®&C must
connect to well known Skype nodes in order to logto the
Skype network. It does so by sending UDP packetsaime
bootstrap super nodes and then waits for theiroresp over UDP
for some time. It is not clear how SC selects amooafstrap SNs
to send UDP packets to. SC then established a T@Rection
with the bootstrap super node that responded. Sime than
one node could respond, a SC could establish a ddbRection
with more than one bootstrap node. A SC, howeveaintains a
TCP connection with at least one bootstrap noderaay close
TCP connections with other nodes. After exchangsame
packets with SN over TCP, it then perhaps acquhiedaddress of
the login server (80.160.91.11). SC then estaldishe TCP

SC 66.235.180.9:33033 (Bootstrap node)
————TCP:SYN———»
< ——TCP:ACK———
TCP > 14B
et TCP 14B
TCP | 34B
et TCP 146B
TCP - 67B
SC
ICMP P 204.152.229.231
ICMP P 130.244.201.151
ICMP P 202.139.199.243
ICMP P 202.232.43.7
SC 80.160.91.11 (Login server)
————TCP:SYN———»
< ——TCP:ACK———
TCP - 14B
et TCP 14B
TCP - 176B (password exchange)
et TCP 246B
FIN L
——FIN, ACK———

SC sends UDP packets to 4 distinct
nodes and receives response over UDP. We
believe that these nodes also run Skype.

SC
UDP P 18B N1, N2, N3, N4
-t UDP 26B N1, N2, N3, N4
SC 66.235.180.9:33033 (SN)
TCP - 28B
- TCP 197B
TCP | 16B

SC sends UDP packets to 22 distinct
nodes and receives response from

them over UDP
SC

66.235.180.9:33033 (SN)

UuDP 34B (17 distinct nodes)
- UDP 44B (5 distinct nodes)
UDP >| 11B (replies from 22 nodes)

Figure 3. Message flow for the first login after istallation for
SC on a public IP address. ‘B’ stands for bytes antN’ stands

for node. SYN and ACK packets are shown to indicatevho
initiated TCP connection. Message flows are not sttly
according to time. Messages have been grouped toget to
provide a better picture. Message size corresponds size of
TCP or UDP payload. Not all messages are shown.

For the login process, we observed message flowthiersame
Skype user id for the three different network setdpscribed in
Section 3.

The message flow for the first-time login processd SC running
on a machine with public IP address is shown irufeg3. The
total data exchanged between SC, SN, login seaml, other
nodes during login is about 9 kilobytes.

SC 66.235.181.9:33033 (Bootstrap node)
UDP - 18B
- UDP 11B
UDP - 23B
- UDP 18B
SC 64.246.48.23:33033 (SN)
UDP - 18B
[t UDP 18B

SC makes a TCP connection with
64.246.48.23. This node becomes a SN.

SC 64.246.48.23:33033 (SN)

I TCP:SYN——»]
<«———TCP:ACK———

TCP > 2402B
=g TCP 14B
=g TCP 18B

TCP »| 34B
=g TCP 148B

TCP p-| 61B

UDP > 18B
- UDP 18B

For same Skype user id, SC on public IP address
and SC behind a NAT send ICMP packets to the

same nodes

SC
ICMP - 204.152.229.231
ICMP - 130.244.201.151
ICMP P 202.139.199.243
ICMP - 202.232.43.7

SC 64.246.48.33:33033 (SN)
TCP P 19B

g TCP 1206B

et TCP 18B
TCP - 34B

g UDP 26B
TCP P 19B

g TCP 1206B

et TCP 426B
TCP P 10B

SC sends UDP packets to 4 distinct
nodes and receives response over UDP. We

believe that these nodes also run Skype.
SC

I
D—ict

18B N1, N2, N3, N4
{ 26B N1, N2, N3, N4

SC 80.160.91.11 (Login server)
———TCP:SYN———p»
l——TCP:ACK———

TCP P 14B
g TCP 14B
Tcp P 1768 (password exchange)
g TCP 217B
FIN -
l«——FIN, ACK——
SC 64.246.48.33:33033 (SN)
TCP 1978
et TCP 16B

SC sends UDP packets to 22 distinct nodes
and receives response from them over UDP
SC 64.246.48.33:33033 (SN)
' UDP >| 348B (22 distinct nodes)
|< UDP |

11B (22 distinct nodes)

Figure 4. Message flow for first login after instdation for SC
behind a simple NAT. ‘B’ stands for bytes and ‘N’ sands for
node. SYN and ACK packets are shown to indicate who
initiated TCP connection. Message flows are not sttly
according to time. Messages have been grouped toget to
provide a better picture. Message size corresponds size of
TCP or UDP payload. Not all messages are shown irhe
message flow.

For a SC behind a port-restricted NAT, the mesflagefor login
was roughly the same as for a SC on a public IPresdd
However, more data was exchanged. On average, Stamged
10 kilobytes of data with SN, login server, andestBkype nodes.
The message flow is shown in Figure 4.

A SC behind a port-restricted NAT and a UDP-retddfirewall

was unable to receive any UDP packets from machintsde the
firewall. It therefore could send and receive omigP traffic. It

had a TCP connection with a SN and the login serapd it

exchanged information with them over TCP. On averag

exchanged 8.5 kilobytes of data with SN, login serand other
Skype nodes. The message flow is shown in Figure 5.

SC 80.160.91.12:33033 (Bootstrap node)
| UDP »| 18B

SC 66.235.181.9:33033 (Bootstrap node) (1)
i UDP > 18B

SC 66.235.180.9:33033 (Bootstrap node) (2)
| UDP > 18B

Bootstrap nodes 66.235.180.9 and 66.235.181.9
are represented by labels (1) and (2) respectively in
subsequent flows

SC 66.235.180.9:33033 (1), (2)
TCP > 197B

=g TCP 16B

SC
TCP p-| 14B (1), (2)

g TCP 14B (1), (2)
TCP p 35B (1), (2)

|t TCP 148B (1), (2)
TCP P 35B (2)

For same Skype user id, SC on public IP address and
SC behind a NAT, and SC behind a UDP restricted
firewall send ICMP packets to the same nodes

SC
ICMP 204.152.229.231
ICMP 130.244.201.151
ICMP 202.139.199.243
ICMP 202.232.43.7

SC decides that it will retain TCP connection with
66.235.181.9. This node becomes a SN.

sC 66.235.181.9:33033 (SN)
' TCP » 19B
l: TCP 1205B
TCP 407B

SC sends UDP packets to 4 distinct nodes. Since
it is behind UDP restricted firewall, it cannot
receive any responses over UDP.

SC
| UDP p| 18B NI, N21, N3, N4
SC 80.160.91.11 (Login server)
———TCP:SYN——»
< ——TCP:ACK——
TCP > 14B
-t TCP 14B
TCP > 176B (password exchange)
- TCP 217B
FIN L
——FIN, ACK———

SC sends UDP packets to 18 distinct nodes. It is
conjectured that they should be online Skype

nodes.
SC
| UDP | 44B (18 distinct nodes)
SC 66.235.181.9:33033 (SN)
TCP | 28B
TCP - 16B
-t TCP 197B
[t TCP 52B
TCP P 16B
-t TCP 101B
TCP > 93B
[t TCP 249B
TCP P 1460B
-t TCP 588B
TCP P 1460B
- TCP 588B
TCP P 1460B
¢ TCP 588B
TCP P 895B

Figure 5. Message flow for first login after instdation for a

SC behind a firewall, which blocks UDP packets. ‘B'stands
for bytes and ‘N’ stands for node. SYN and ACK packts are
shown to indicate who initiated TCP connection. Mesage
flows are not strictly according to time. Messagebave been
grouped together to provide a better picture. Messge size
corresponds to size of TCP or UDP payload. Not athessages
are shown in the message flow.

The following inferences can be drawn by carefideslation of
call flows in Fig 3, 4, and 5.

4.2.4.1 NAT and Firewall Determination

We conjecture that a SC is able to determine ainldfgit is
behind a NAT and firewall. We guess that there ar&east two
ways in which a SC can determine this informatiddne
possibility is that it can determine this inforneatiby exchanging
messages with its SN using a variant of the STUNpfbtocol.
The other possibility is that during login, a S@dg and possibly
receives data from some nodes after it has mad&Pacbnnection
with the SN. We conjecture that at this point, S@3iits variation
of STUN [1] protocol to determine the type of NAT forewall it
is behind. Once determined, the SC stores thignmdtion in the
Windows registry. We also conjecture that SC réifessthis
information periodically. We are not clear on hoften a SC
refreshes this information since Skype messagesramgpted.

4.2.4.2 Alternate Node Table

Skype is a p2p client and p2p networks are veryamyjo. SC,
therefore, must keep track of online nodes in thgp8 network
so that it can connect to one of them if its SN doees
unavailable.

From Figure 3 and 4, it can be seen that SC sebd puhckets to
22 distinct nodes at the end of login process assiply receives
a response from them if it is not behind a UDPrietsd firewall.
We conjecture that SC uses those messages toiadvtstarrival
on the network. We also conjecture that upon réngia response
from them, SC builds a table of online nodes. Wetbés table
alternate node table. It is with these nodes a&Cconnect to, if
its SN becomes unavailable. The subsequent excharige
information with some of these nodes during cathlelésshment
confirms that such a table is maintained.

It can be seen from Figure 3, 4, and 5, that SQsd@MP
messages to some nodes in the Skype network. Eserrefor
sending these messages is not clear.

4.2.5 Subsequent Login Process

The subsequent login process was quite similahéeofitst-time

login process. The SC built a HC after a user ldggefor the

first time after installation. The HC got periodigaupdated with
the IP address and port number of new peers. Datibgequent
logins, SC used the login algorithm to determinelegist one
available peer out of the nodes present in the HCthen

established a TCP connection with that node. We alsserved
that during subsequent logins, SC did not send@wpP packets.

4.2.6 Login Process Time

We measured the time to login on the Skype netfamrkhe three
different network setups described in Section 3.r Fois

experiment, the HC already contained the maximumtved

hundred entries. The SC with a public IP address the SC
behind a port-restricted NAT took about 3-7 secaiodsomplete
the login procedures. The SC behind a UDP-resttiit@wall

took about 34 seconds to complete the login proceéss SC
behind a UDP-restricted firewall, we observed tihatent UDP
packets to its thirty HC entries. At that point@ncluded that it is
behind UDP-restricted firewall. It then tried totadish a TCP
connection with the HC entries and was ultimatélg do connect
to a SN.

4.3 User Search

Skype uses its Global Index (GI) [2] technologystarch for a
user. Skype claims that search is distributed argliaranteed to
find a user if it exists and has logged in durihg tast 72 hours.
Extensive testing suggests that Skype was alwalgs tablocate
users who logged in using public or private IP addrin the last
72 hours.

Skype is a not an open protocol and its messagesrarypted.
Whereas in login we were able to form a reasongibcise
opinion about different entities involved, it istnmossible to do
so in search, since we cannot trace the Skype gesseyond a
SN. Also, we were unable to force a SC to conneet particular
SN. Nevertheless, we have observed and preserthse@ssage
flows for the three different network setups.

SC SN
TCP > 16B
[t TCP 52B
UDP P 77B N1
UDP P 77B N2
UDP P 44B N3
UDP - 44B N4

Figure 6. Message flow for user search when SC haspublic
IP address. ‘B’ stands for bytes and ‘N’ stands fornode.
Message sizes correspond to payload size of TCP BIDP
packets.

A SC has a search dialog box. After entering thgp8kuser id
and pressing the find button, SC starts its sefoclka particular
user. For SC on a public IP address, SC sent apecRet to its
SN. It appears that SN gave SC the IP address @hdpmber of
four nodes to query, since after that exchange ®ikh SC sent
UDP packets to four nodes. We also observed thah&Cnot
exchanged any information with these four nodesndutogin.

SC then sent UDP packets to those nodes. If itdcoat find the
user, it informed the SN over TCP. It appears that SN now
asked it to contact eight different nodes, sincetlsh sent UDP
packets to eight different nodes. This processicgoat until the
SC found the user or it determined that the usgmdt exist. On
average, SC contacted eight nodes. The searchthoed to four
seconds. We are not clear on how SC terminateseidueh if it is
unable to find a user.

SC SN
TCP > 16B
-t TCP 101B
SC
UDP P 44B N1, N2, N3, N4
- UDP 17B N2, N3
UDP - 369B N3
UDP P 44B (5 distinct nodes)
g UDP 17B (response from

5 distinct nodes)

Figure 7. Message flow for user search when SC ieHhind a
port-restricted NAT. ‘B’ stands for bytes and ‘N’ stands for
node. UDP packets were sent to N1, N2, N3, and N4rihg

login process and responses were received from theMessage
size corresponds to payload size of TCP or UDP paets.

A SC behind a port-restricted NAT exchanged datavéen SN,
and some of the nodes which responded to its UD®est during
login process. The message flow is shown in Figure

A SC behind a port-restricted NAT and UDP-restdcfeewall

sent the search request over TCP to its SN. We\zelkhat SN
then performed the search query and informed S@efearch
results. Unlike user search by SC on a public 1&ress, SC did
not contact any other nodes. This suggests thakrie® that it
was behind a UDP-restricted firewall. The messéme s shown
Figure 8.

SC SN
TCP > 16B
-t TCP 52B
TCP P 406B
- TCP 1104B
SC SN
TCP > 16B
-t TCP 52B
TCP | 406B
-t TCP 1104B
SC SN
TCP > 183B
- TCP 132B
TCP | 205B
- TCP 27B
TCP | 205B
- TCP 27B
TCP P 205B
- TCP 27B
TCP > 138B
[TCP 18B

Figure 8. User search by a SC behind a UDP-restrietl
firewall. ‘B’ stands for bytes. Data is exchanged vth SN only.
Message size corresponds to payload size of TCP/Upé&ckets.

4.3.1 Search Result Caching

To observe if search results are cached at intéateedodes, we
performed the following experiment. User A was Ineha port-
restricted NAT and UDP-restricted firewall, andlbgged on the
Skype network. User B logged in using SC runningrathine B,
which was on public IP address. User B (on pulfig dearched
for user A, who is behind port-restricted NAT anBR}restricted
firewall. We observed that search took about 6®wsds. Next,
SC on machine B was uninstalled, and Skype regdégred so
as to remove any local caches. SC was reinstatleghachine B
and user B searched for user A. The search tookitaBet

seconds. This experiment was repeated four timeslitberent

days and similar results were obtained.

From the above discussion we infer that the SCopad user
information caching at intermediate nodes.

4.4 Call Establishment and Teardown

We consider call establishment for the three ndtwsetups
described in Section 3. Further, for each setupceresider call
establishment for users that are in the buddyofistaller and for

users that are not present in the buddy list. iitnjgortant to note
that call signaling is always carried over TCP.

For users that are not present in the buddy l&t,pdacement is
equal to user search plus call signaling. Thus,digeuss call
establishment for the case where callee is in tingdp list of
caller.

If both users were on public IP addresses, onlirteweere in the
buddy list of each other, then upon pressing tHebedton, the
caller SC established a TCP connection with thdeeaBC.
Signaling information was exchanged over TCP. Thessage
flow between caller and callee is shown in Figure 9

The initial exchange of messages between caller calbbe

indicates the existence of a challenge-responséaném. The

caller also sent some messages (not shown in F&yureer UDP

to alternate Skype nodes, which are online Skypeleso
discovered during login. For this scenario, threbiytes of data
was exchanged.

Caller press dial
Caller Callee
———TCP:SYN———p»
——TCP:ACK———
TCP P 14B
-t TCP 14B
TCP - 77B
-t TCP 4B
TCP P 4B
-t TCP 528B
TCP P 4B
- TCP 946B
TCP | 479B

Callee rings

Figure 9. Message flow for call establishment whecaller and
callee SC are on machines with public IP addressesd callee
is present in the buddy lists of caller. ‘B’ standgor bytes. Not
all messages are shown.

In the second network setup, where the caller vedsni port-
restricted NAT and callee was on public IP addrsggaling and
media traffic did not flow directly between calland callee.
Instead, the caller sent signaling information oW&P to an
online Skype node which forwarded it to callee oV&P. This
online node also routed voice packets from caltecdllee over
UDP and vice versa. The message flow is showngargi10.

Caller
UDP p| 18B N1, N21, N3, N4
[t UDP 26B N1, N21, N3, N4
Caller SN
TCP P 208B
[t TCP 1086B
TCP p 141B
et TCP 1250B
Caller N3, N6
F————TCP:SYN———p»
|«@——TCP:ACK———

Caller N5. N6
TCP P 14B
|t TCP 14B
TCP - 15B
UDP »| 23B
Caller SN
TCP P 133B
- TCP 10B
Caller N5, N6
TCP P 16B
l TCP 4B
Caller N5
[t TCP 569B
TCP - 946B
[t TCP 479B
TCP - 228B
[t TCP 14B
Caller
[t TCP 125B
TCP - 1460B
TCP p{ 393B
[t TCP 8B
TCP - 23B
[t TCP 4B
Caller NS5 Callee
|<=—Media:UDP ==jp»| == Media: UDP ==p»|
Voice packet size is 69B. N5 acts as media proxy
Caller N7, N8
' TCP > 8B
|< TCP 18B Callee
TCP 19B
[t TCP { 19B

Caller and callee on the average exchange 3 msg/s
over TCP with N7, and N8 during the time call is
established.

Figure 10. Message flow for call establishment whetaller SC
is behind a port-restricted NAT and callee SC is omublic IP
address. ‘B’ stands for bytes and ‘N’ stands for nde. Not all
messages are shown. Caller SC sent UDP messagesoites 5,
6, 7, and 8 during login and received responses frothem. We
thus believe caller SC stored the IP address and pgoof these
nodes in its internal tables, which we call the adrnate node
table.

For the third setup, in which both users were bahport-
restricted NAT and UDP-restricted firewall, botHleaand callee
SC exchanged signaling information over TCP wittothar
online Skype node. Caller SC sent media over TC&ntenline
node, which forwarded it to callee SC over TCP #ité versa.
The message flow is shown in Figure 11.

Caller
UDP | 18B N1, N2, N3, N4
e UDP 26B N1, N2, N3, N4
Caller SN
TCP > 70B
<t TCP 723B
Caller
[uUDP | 52B N5, N6, N7, N8 (from
Caller alternate node table)
UDP | 28B N5, N6, N7, N8
———TCP:SYN——®»| N9, N10
l——TCP:ACK———
TCP P 14B N9, N10
<t TCP 14B N9, N10
TCP P 15B N9, N10
[t TCP 4B N9, N10
Caller SN
TCP - 139B
et TCP 10B
Caller N9
|t TCP 566B
TCP P 946B
g TCP 479B
TCP - 2288
et TCP 53B
Caller N10
TCP - 228B
[t TCP 33B
Caller N9 Callee
|l—Media:UDP ==jp»| agf=—=Media: UDP ==Jip»|
Caller NI11,N12
TCP:SYN—p|
«¢——TCP:ACK Callee
TCP:SYN
-¢——TCP:ACK
Caller NI11,N12
TCP > 19B
[t TCP 19B Callee
TCP >| 198
[t TCP { 19B

Caller and callee on the average exchange 3 msg/s
over TCP with N11, and N12 during the time call
is established.

Figure 11. Message flow for call establishment whetaller and
callee SC are behind a port-restricted NAT and UDP-
restricted firewall. ‘B’ stands for bytes and ‘N’ stands for a
node. Not all messages are shown. Voice traffic fie over
TCP.

There are many advantages of having a node rowetevdite
packets from caller to callee and vice versa. Fitgprovides a
mechanism for users behind NAT and firewall to tadkeach
other. Second, if users behind NAT or firewall wemparticipate
in a conference, and some users on public IP asl@tes want to
join the conference, this node serves as a mixébamadcasts the
conferencing traffic to the participants. The negaside is that
there will be a lot of traffic flowing across thiede. Also, users

generally do not want that arbitrary traffic shotitdv across their
machines.

During call tear-down, signaling information is &anged over
TCP between caller and callee if they are both ablip IP
addresses, or between caller, callee and theiec&sp SNs. The
messages observed for call tear down between eadtécallee on
public IP addresses are shown in Figure 12.

Caller Callee
' TCP 17B
| TCP | 148

Figure 12. Call tear down message flow for callerral callee
with public IP addresses

For the second, and third network setups, calldeam signaling
is also sent over TCP. We, however, do not prebese message
flows, as they do not provide any interesting infation.

4.5 Media Transfer and Codecs

If both Skype clients are on public IP addressnthedia traffic
flowed directly between them over UDP. The medidfitr flowed
to and from the UDP port configured in the optiahalog box.
The size of voice packet was 67 bytes, which issike of UDP
payload. For two users connected to Internet ov@ Mb/s
Ethernet with almost no congestion in the netwookighly 140
voice packets were exchanged both ways in one deddws, the
total uplink and downlink bandwidth used for voigaffic is 5
kilobytes/s. This bandwidth usage corresponds \lith Skype
claim of 3-16 kilobytes/s.

If either caller or callee or both were behind pestricted NAT,

they sent voice traffic to another online Skype exader UDP.
That node acted as a media proxy and forwardeddtve traffic

from caller to callee and vice versa. The voicekpasize was 67
bytes, which is the size of UDP payload. The badtiwused was
5 kilobytes/s.

If both users were behind port-restricted NAT arfdRJrestricted
firewall, then caller and callee sent and receivade traffic over

TCP from another online Skype node. The TCP papkgtoad

size for voice traffic was 69 bytes. The total ogland downlink
bandwidth used for voice traffic is about 5 kilobgts. For media
traffic, SC used TCP with retransmissions.

The Skype protocol seems to prefer the use of U@Pvbice
transmission as much as possible. The SC will U3P fbr voice
transmission if it is behind a NAT or firewall thatlows UDP
packets to flow across.

4.5.1 Slence Suppression

No silence suppression is supported in Skype. Weevid that
when neither caller nor callee was speaking, vpiaekets still
flowed between them. Transmitting these silenceéetachas two
advantages. First, it maintains the UDP bindingNAT and
second, these packets can be used to play somgrbankl noise
at the peer. In the case where media traffic flowedr TCP
between caller and callee, silence packets wellessiit. The
purpose is to avoid the drop in TCP congestion windize,
which takes some RTT to reach the maximum levehaga

4.5.2 Putting a Call on Hold

Skype allows peers to hold a call. Since a SC qarate behind
NATSs, it must ensure that UDP bindings are mak &tAZ. On

average, a SC sent three UDP packets per secdhd tall peer,
SN, or the online Skype node acting as a mediaypndren a call
is put on hold. We also observed that in addition UDP

messages, the SC also sent periodic messages G¥ertol the
peer, SN, or online Skype node acting as a medigypauring a
call hold.

4.5.3 Codec Frequency Range

We performed experiments to determine the randeeqfiencies
Skype codecs allow to pass through. A call was bésted
between two Skype clients. Tones of different fiemties were
generated using the NCH Tone Generator [11] onctiler SC
and output was observed on the callee SC and \écgav We
observed that the minimum and maximum audible feqgy
Skype codecs allow to pass through are 50 Hz af@08Hz
respectively.

Using Net Peeker [4], we reduced the uplink and rdimk
bandwidth available to Skype application to 1500tebis,
respectively. We observed that the minimum and mari
audible frequencies Skype codecs allowed to passugh
remained unchanged i.e. 50 Hz and 8,000 Hz, raspBct

4.5.4 Congestion

We checked Skype call quality in a low bandwidtlvimmment
by using Net Peeker [4] to tune the upload and doach
bandwidth available for a call. We observed thatinkpand
downlink bandwidth of 2 kilobytes/s each was neagssor
reasonable call quality. The voice was almost wtligtble at an
uplink and downlink bandwidth of 1.5 kilobytes/s.

4.6 Keep-alive Messages
We observed in for three different network setuyz the SC sent
a refresh message to its SN over TCP every 60s.

S'C TCP SN97B
|< TCP >| 4B

Figure 13. Skype refresh message to SN

5. CONFERENCING

We observed the Skype conferencing features fdnreetuser
conference for the three network setups discusseSection 3.
We use the term user and machine interchangeabtyud name
the three users or machines as A, B, and C. Machin@as a 2
GHz Pentium 4 with 512 MB RAM while machine B, a@dvere

Pentium 1l 300MHz with 128 MB RAM, and Pentium P260

MHz with 128 MB RAM, respectively. In the first sgt, the three
machines had a public IP address. A call was ashaal between
A and B. Then B decided to include C in the confese From the
ethereal dump, we observed that B and C were sgti@ir voice
traffic over UDP to SC on machine A, which was @Bgtias a
mixer. It mixed its own packets with those of B a&ht them to
C over UDP and vice versa as shown in Figure 14.sire of the
voice packet was 67 bytes, which is the size of Uideket
payload.

Figure 14. Skype three user conferencing

In the second setup, B and C were behind porticesdr NAT,
and A was on public Internet. Initially, user A aBdestablished
the call. Both A and B were sending media to anotBleype
online node, which forwarded A’s packets to B oudP and
vice versa. User A then put B on hold and estabtish call with
C. It then started a conference with B and C. Wseoked that
both B and C were now sending their packets to ArdJyDP,
which mixed its own packets with those coming fr8mand C,
and forwarded it to them appropriately.

In the third setup, B and C were behind port-restd NAT and
UDP-restricted firewall and A was on public Intern&ser A
started the conference with B and C. We observatdbth B and
C were sending their voice packets to A over TCPni&ed its
own voice packets with those coming from B and @l an
forwarded them to B and C appropriately.

We also observed that even if user B or C startedrderence,
A’s machine, which was the most powerful amongst tiree,
always got elected as conference host and mixer.

The white paper [7] observes that if iLBC [8] codsased, then
the total call 36 kb/s for a two-way call. For taneser
conference, it jumps to 54 kb/s for the machinetihgsthe
conference.

For a three party conference, Skype does not db nigsh
conferencing [12].

6. OTHER EXPERIMENTS

Unlike MSN Messenger, which signs out the usehdt user logs
in on other machine, Skype allows a user to loffam multiple
machines simultaneously. The calls intended fot tser are
routed to all locations. Upon user picking a calbae location,
the call is immediately cancelled at other locadioSimilarly,
instant messages for a user who is logged in atipteimachines
are delivered to all the locations.

A voice call was established between a SC in the IRb [20]
and a SC connected to a 56 kb/s modem. Modem usgEsin
China, Pakistan, and Singapore. The experiment thas
repeated with MSN, and Yahoo messengers. In akthases, the
modem users reported better quality for Skype.

The SN is selected by the Skype protocol based pansber of
factors like CPU and available bandwidth. It is paissible to
arbitrarily select a SN by filling the HC with IRddress of an
online SC. This conclusion was drawn from the folltg

experiment. Consider two online Skype nodes A andABs

connected to Skype network and has only one entitg HC. We
call super node of A as SN_A. Now we modify the BICSC on
machine B, such that it only contains the IP adsdrasd port
number of SC running at A. When B logged onto theps

network, we observed that it connected to A’'s supmde rather
than connecting to A.

7. CONCLUSION

Skype is the first VoIP client based on peer-torgeehnology.
We think that three factors are responsible for iitsreasing
popularity. First, it provides better voice qualdy then MSN and
Yahoo IM clients; second, it can work almost seasliebehind
NATs and firewalls; and third, it is extremely easyinstall and
use. We believe Skype client uses its version otI$T[1]
protocol to determine the type of NAT or firewadlid behind. The
NAT and firewall traversal techniques of Skype ammilar to
many existing applications such as network gamesis Iby
random selection of sending and listner ports,aiSECP as voice
streaming protocol, and the peer-to-peer naturehef Skype
network, that not only SC traverses NATs and filésuaut it does
so withhout any explicit NAT or firewall traversaérver. Skype
uses TCP for signaling. It uses wide band codea$ laas
probably licenced them from GloballPSound [10]. &Ky
communication is encrypted.

The underlying search technique Skype uses foraesech is still
not clear. Our guess is that it uses a combinaifomashing and
periodic controlled flooding to gain information@li the online
Skype users.

Skype has a central login server which stores tiginl and
password of each user. Since Skype packets argptedr it is
not possible to say with certainty what other infation is stored
on the login server. However, during our experiraem¢ did not
observe any subsequent exchange of information thithlogin
server after a user logged onto the Skype network.

APPENDIX

The Appendix shows the message dump of HTTP 1.1 GET [5]

requests that a SC sent to skype.com and the respdrreceived,
when it was started by the user.

When SC was started for the first time after idataln, it sent a
HTTP 1.1 GET request containing the keyword inethlito
skype.com. This request was not sent in subsedtiere runs.
The request is shown below:

GET /ui/0/97/en/installed HTTP/1.1
User-Agent: Skype™ Beta 0.97
Host: ui.skype.com

Cache-Control: no-cache

The 200 OK response SC received for this GET reaques
HTTP/1.1 200 OK

Date: Tue, 20 Apr 2004 04:51:39 GMT
Server: Apache/2.0.47 (Debian GNU/Linux) PHP/4.3.5

mod_ssl/2.0.47 OpenSSL/0.9.7b
X-Powered-By: PHP/4.3.5
Cache-control: no-cache, must revalidate
Pragma: no-cache

Expires: 0

Content-Length: 0

Content-Type: text/html; charset=utf-8
Content-Language: en

During subsequent startups, SC sent a a HTTP 11 r@guest
containing the keyword getlatestversion to skypa:co

GET /ui/0/97/en/getlatestversion?ver=0.97.0.6 HTTP/1.1
User-Agent: Skype™ Beta 0.97

Host: ui.skype.com

Cache-Control: no-cache

The 200 OK response SC received for this GET reques

HTTP/1.1 200 OK
Date: Tue, 20 Apr 2004 04:51:40 GMT
Server: Apache/2.0.47 (Debian GNU/Linux)
PHP/4.3.5 mod_ssl/2.0.47 OpenSSL/0.9.7b
X-Powered-By: PHP/4.3.5
Cache-control: no-cache, must revalidate
Pragma: no-cache
Expires: 0
Transfer-Encoding: chunked
Content-Type: text/html; charset=utf-8
Content-Language: en

2
96
0

REFERENCES

[1] J. Rosenberg, J. Weinberger, C. Huitema, and RyMah
STUN: Simple Traversal of User Datagram Protocd @)
Through Network Address Translators (NATs). RFC348
IETF, Mar. 2003.

[2] Global Index (Gl):
http://www.skype.com/skype_p2pexplained.html

[3] Ethereal. http://www.ethereal.com
[4] Net Peeker. http://www.net-peeker.com

J. Rosenberg, H. Schulzrinne, G. Camarillo, A.¢hnston,
J. Peterson, R. Sparks, M. Handley, and E. Scho®ler
session initiation protocol. RFC 3261, IETF, Jufé2

[6] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. &ilater, P.
Leach, T. Berners-Lee. HTTP: hyper text transfetquol.
RFC 2616, IETF, June 1999.

[7] Skype conferencing white paper by PowerModeling:
http://www.powermodeling.com/files/whitepapers/Ceneinc
€%20Test%20feb%2009.pdf

[8] ILBC codec.
http://www.globalipsound.com/pdf/gips_iLBC.pdf

[9] iSAC codec.
http://www.globalipsound.com/pdf/gips_iSAC.pdf

[10] Global IP Sound. http://www.globalipsound.com/parsi
[11] NCH Tone Generator. http://www.nch.com.au/tonegen/

[12] J. Lennox and H. Schulzrinne. A protocol for releab [18] J. Rosenberg, R. Mahy, C. Huitema. TURN: travensaig

decentralized conferencing. ACM International Waids on relay NAT. Internet draft, Internet Engineering K&rce,
Network and Operating Systems Support for Digitati® July 2004. Work in progress.
and Video (NOSSDAV), Monterrey, California, Juned30 [19] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H.
[13] Skype FAQ. http://www.skype.com/help_fag.html Balakrishnan. Chord: A scalable peer-to-peer locdenvice
for internet applications. In Proc. ACM SIGCOMM (Ba

[14] Superb Internet. http://www.superb.net/ Diego, 2001)

15] Susquehanna Communications. http://www.suscom.net/
[15] Susq P [20] IRT lab. http:/www.cs.columbia.edu/IRT

[16] Everyones Internet. http://www.evl.net/
[17] Kazaa. http://lwww.kazaa.com

Skype™ Beta - Options f'5_<|

Gaeneral | Personal || Privacy || Call Alerts | Instant Message Alerts | Sounds || Ring Tones | Advanced
Conneckion |Han|:|,l'Heal:Isets kKeyboard

Use port |15792 | For incoming conneckions

Use patt 80 a5 an alkernative For incoming connections

This is the port that Skype uses ta lisken For incaming communications from other Skype users
{assuming wour firewall does nok block them), In addition, Skype will send ook outgoing UDP
packets from this port, Moke that this setting does not affect outgoing communications -- i.e.
wour ability ko connect to other Skype users and the Skype network,

Figure 16. Skype connection tab. It shows the portan which Skype listens for incoming connections.

£ Registry Editor |Z||E|E|

File Edit Wiew Fawvorites Help
=3 Lib » Type Data
(1 Bcm REG_52 {walue nat set)
% cal _ [ab] REG_ 57 80.160.91.12:33033,1
= [C:':'I”;E“d":"f' i [ab]z REG 57 £6.235.180.3:22112
o F;ZW”:L ab]3 REG_SZ 81.67.170.129:17177
4 REG_5Z 65,230,70,155:40178
3 HostCache 5
D LoginServers 5 REG_5Z 68.5,243.243:63815
D HatTracker 6 REG_S5Z 68.14,107.154:195
|:| continuous_advertiser —
(3 Localnode
|:| Message a2
—_ = —
< I || ?
My Computeri\HKEY _CURRENT_LISER\Software|SkypeiPhonelLiblConnectionHostCache

Figure 17. Skype host cache list

