
SKYPE API
Description of Skype API and how to use it

Maintainer: Taavet Hinrikus
Version: 1.2 2005-03-04

Confidentiality: This document is the property of Skype Technologies S.A. and is
considered to be strictly confidential. It has been submitted on a confidential basis solely
for the benefit of selected, qualified potential partners, customers or suppliers and is not
for use by any other persons. Neither may it be reproduced, stored, transmitted or
copied in any form. By accepting delivery of this document, the recipient agrees to
return this copy to the company, if he or she discontinues to cooperate with Skype
Technologies S.A. He or she furthermore agrees not to copy, fax, reproduce, or
distribute any document received, in conjunction with this business, without permission.
This document does not constitute an offer to sell, or a solicitation of an offer to
purchase.

© Skype Technologies S.A. 1/37

1 PURPOSE OF THIS DOCUMENT
Describe the Skype API and how to implement applications and devices
communicating with Skype through the API.

2 REVISION HISTORY

2.1API
Revision: 1.0.0.94
Date: 2004-10-21
Release notes: API public release
Revision: 1.1.0.61
Date: 2005-01-12
Release notes:

• added: Protocol 3
• change: API - now allows one ongoing search per client only. Attempting

to issue new search before receiving results of previous one will result in
error 72.

• change: API allows now one ongoing search per client only
• change: CHAT and CHATMESSAGE properties
• bugfix: API showed previous user's calls and messages
• bugfix: Fixed confusing syntax if protocol 3 is used
• bugfix: SEARCH MESSAGES does not return CHATMESSAGES value

anymore if protocol 2 is used
• bugfix: API displayed only first word of message or fullname
• bugfix: In ACL only one program's permission was remembered
• bugfix: MC message IDs were not returned
• bugfix: Problems with connecting for older applications
• bugfix: Fixed API exceptions if Skype is used on two Windows accounts

simultainously
• bugfix: On Win98/Me lots of dll files were shown to use Skype instead of

the respective application
• bugfix: Sometimes API didn't return 'BUDDYSTATUS 1' messages

Revision: 1.2.0.11
Date: 2005-03-04
Release notes:

• added: Protocol 4
• Support for conferencing: start a conference, add people to conference

and being able to get list of conf call participants and notifications about

© Skype Technologies S.A. 2/37

these
• Possibility to check SkypeOut balance
• Possible to call speeddial numbers
• Notifications about changing audiodevices
• Notification about deleting IM history
• Changed language and country to return ISO list instead of countrynames

(new behaviour: starting from protocol 4 language and country values will
be prefixed by ISO codes ('GET USER echo123 COUNTRY' => 'USER
echo123 COUNTRY ee Estonia'))

• Notification about shutting down Skype
• Support for SkypeIn
• Registry key to disable one second timeout for debugging
• Possibility to add userhande to OPEN ADDAFRIEND
• CALL FAILUREREASON 1 - documentation error, doc changed to say

"Misc error"
• change: if CHATMESSAGE property is missing, command 'SET

CHATMESSAGE id' gives the same error for both existing and nonexisting
id

• change: PSTN_STATUS gives error string returned from gateway
• change: HASCALLEQUIPMENT always returns TRUE
• bugfix: #11648 API: "AUDIO IN" and "AUDIO OUT" commands don't read

doubly byte driver names correctly
• bugfix: #11473 API: BTN_PRESSED E fails with error 71 invalid key
• bugfix: #11472 API: mute is communicated
• bugfix: #11468 API: Conference inititated to more than 4 participants
• bugfix: #11368 API: IMHISTORYCHANGED doesn't work
• bugfix: #11272 API: MUTE doesn't work
• bugfix: #11102 API: Cannot call SkypeOut contacts using speeddial
• bugfix: #11344 API: no response to empty CALL
• bugfix: #11204 SKYPE access api canot deny access to a device.
• change: #10567 up/down via phone api autoexpand contactlist groups
• bugfix: #11111 API: No notification if the user changes audio device

2.2Document
Rev Date Changed by Comment/Change

1.0 2004-10-
22

Taavet
Hinrikus API public release

© Skype Technologies S.A. 3/37

1.1 2005-01-
12

Taavet
Hinrikus Release of Skype 1.1

1.2 2005-03-
04

Taavet
Hinrikus

Release of Skype 1.2, protocol 4, developer FAQ
entries, etc

3 LEGAL STATUS
This API documentation and the Skype API are copyrighted property of Skype
Technologies S.A. or affiliated companies. For usage restrictions please read the
EULA available on the Skype website http://www.skype.com/go/eula

4 INTRODUCTION
The Skype API is divided into 2 separate parts. Skype Phone API and Skype
Access API:

• Skype Phone API is an interface that Skype uses to access devices,
including, but not limited to, USB phones. The device by itself does not
have to be a hardware device, but generally it is. This API is controlled by
Skype and the device-side of the API can be viewed as a driver. The
controlling party is Skype. This API operates on abstract events level e.g.
the green button is pressed, the handset is off-hook, the device should
ring, etc. The Skype Phone API compatible drivers should install
themselves during install so that Skype can know their presence. There
can be a database of USB devices and related drivers making it possible
for Skype to detect a new device and prompt for driver installation.

• Skype Access API is an interface Skype publishes to 3rd party
applications to access Skype functionality, for example to place a call, to
send a text message, to get Skype user profile, etc. In this API, the 3rd
party application is the controlling side. Skype can optionally grant access
to the Skype Access API on a per-application basis.

5 GENERAL API OVERVIEW
The API is built up on simple text messages that are sent back and forth
between Skype and a device (or device driver or controller running on the host
computer).

6 PHONE API
Phone API commands that are implented as of now are listed below.

6.1From Device to Skype
• NAME deviceName
• PROTOCOL version
• AUDIO_IN deviceName
• AUDIO_OUT deviceName
• HOOK ON|OFF

© Skype Technologies S.A. 4/37

• MUTE ON|OFF
• BTN_PRESSED (0-9,A-Z,#,*,UP,DOWN,YES,NO,SKYPE)
• BTN_RELEASED ...

6.2From Skype to Device
• MUTE ON|OFF

7 ACCESS API
Currently there are some commands (PROTOCOL, AUDIO_*) which are used in
both the Skype Access API and the Skype Phone API.

7.1Usage introduction
When a client application starts using Skype through the Skype API, then Skype
will switch audio devices to the devices reported by the client through the API.
When the transport layer connection dies or is dropped, then Skype will switch
audio devices back to previously selected devices (Skype will regularly check
that the transport layer is still alive). Possibly in the future a notification will be
provided through the API when the user manually switched audio devices to
something else (when compared to devices reported by active client).
It is possible that end-user confirmation is required for allowing a 3rd party to use
Skype using the API. All actions performed using the API will be mirrored on the
Skype application running on the computer.
Note that all times and dates in API are in UTC (Coordinated Universal Time).

7.2Multiple Client Support
It is possible for multiple applications to use the Skype API at the same time.
Protocol stays the same except the following for connecting to Skype: To initiate
communication, Client should broadcast windows message
('SkypeControlAPIDiscover') to all windows in the system, specifying its own
window handle in wParam parameter. In response, Skype responds with
message 'SkypeControlAPIAttach' to the handle specified and indicates
communication window handle in wParam.
Note that polling Skype with 'SkypeControlAPI' should not be done anymore,
instead we will introduce a command for pinging in the next version.

7.3API Access Control (ACL)
Whenever an application tries to use the Skype API, dialog will pop up, asking
for user's confirmation - whether to allow the application to use the API or not.
The main reason for this feature is to protect the privacy and security of the user.
Some suggestions for developers to keep things simple for users:

• Program executables (.exe file) should be named nicely e.g.
"SkypeForWindows.exe". This is important, as the user will see the
executable file name. If filename is unclear, then the user might decide

© Skype Technologies S.A. 5/37

not allow this application to access Skype.
• Signing - applications should be signed with VeriSign's CodesSigning

certificate.
• NAME command - application should support the "NAME" command and

should publish its name

7.4SkypeOut

7.4.1 SkypeOut contacts

It is possible to get the list of SkypeOut contacts - these are now part of the main
contact list i.e. they will be returned with the contact list numbers, if "SEARCH
FRIENDS" command is executed.
To get more information about the number in current user's SkypeOut contacts -
"GET USER <number> <fullname>".
For SkypeOut contacts, command "GET USER <number> ONLINESTATUS" will
return "SKYPEOUT".

7.5How to detect Skype
To see if Skype is installed check the following registry key:
HKCU\Software\Skype\Phone '?SkypePath' . The key will point to the location of
skype.exe. In case that key is missing the application should also check for
existance of HKLM\Software\Skype\Phone '?SkypePath' (if HKCU is missing, but
HKLM is present, it indicates that skype has been installed from an administrator
account, but not yet used from current account).

7.6Versioning info
Whenever a new version of the API is released the protocol version number is
increased. When a client starts using the API then the client must tell the Skype
API the latest protocol version that it supports. Skype will reply with its latest
version number and the number reported by Skype will be the protocol version
used. Skype will never reply with a protocol version which is newer than the
version the client application supports. Skype defaults to protocol version 1.
Skype-supported version can be queried with PROTOCOL 99999.
Example: Client speaks version 3 and tells Skype "PROTOCOL 3", Skype knows
version 2 and replies with "PROTOCOL 2". Version 2 will be the used protocol in
this case.
Notes about Skype API version changes and situations, where client supports an
older version compared to Skype:

• Skype will not discard messages from newer protocol versions, but will
perform the action requested in the message

• Client should ignore unknown commands and properties (which can be
from a newer version of API, for example new status properties etc.)

© Skype Technologies S.A. 6/37

7.7Skype API protocol versions
Protocol versions 1,2 and 3 are available at the moment.

7.7.1 New features in protocol 2

• New onlinestatus SKYPEME.
• If call is set on hold, API notifies clients with "CALL xx STATUS

LOCALHOLD / REMOTEHOLD" respectively. Protocol 1 simply returned
ONHOLD.

• New call status CANCELLED

7.7.2 New features in protocol 3

• Multiperson chat commands
• Compatibility layer for previous IM

7.7.3 New features in protocol 4

• Language and country values are prefixed by ISO code

Protocol 1, 2 compat ib i l i ty
If requested protocol is smaller than 3, then all incoming commands are
converted as follows:

• SEARCH MESSAGES -> SEARCH CHATMESSAGES
• SEARCH MISSEDMESSAGES -> SEARCH MISSEDCHATMESSAGES
• GET MESSAGE -> GET CHATMESSAGE
• SET MESSAGE -> SET CHATMESSAGE

In addition are converted GET MESSAGE properties:
• PARTNER_HANDLE -> FROM_HANDLE
• PARTNER_DISPNAME -> FROM_DISPNAME

All API sent notifications' (including GET/SET MESSAGE) replies are converted:
• CHATMESSAGE * FROM_HANDLE x -> MESSAGE *

PARTNER_HANDLE x
• CHATMESSAGE * FROM_DISPNAME x -> MESSAGE *

FROM_DISPNAME x
• CHATMESSAGE * PROP x -> MESSAGE * PROP x

In case of protocol being smaller than 3, SEARCH MESSAGES and SEARCH
MISSEDMESSAGES commands return string MESSAGES 1, 2, 3.

7.8From Skype to Device

7.8.1 Status commands

All these commands are broadcasted by Skype after initial connection or if the
parameter changes. They can be queried at any time with GET command.

© Skype Technologies S.A. 7/37

User status

Syntax: USERSTATUS status
status - value for user status. Available values:

• UNKNOWN.
• ONLINE - current user is online.
• OFFLINE - current user is offline.
• SKYPEME - current user is in "Skype Me" mode (Protocol 2).
• AWAY - current user is away.
• NA - current user is not available.
• DND - current user is in "Do not disturb" mode.
• INVISIBLE - current user is invisible to others.
• LOGGEDOUT - current user is logged out. Clients are detached.

Example: USERSTATUS INVISIBLE

Connect ion sta tus

Syntax: CONNSTATUS status
status - value for connection status. Available values:

• OFFLINE
• CONNECTING
• PAUSING
• ONLINE
• LOGGEDOUT - current user is logged out.

Example: CONNSTATUS ONLINE

Current user handle

Syntax: CURRENTUSERHANDLE userhandle
Example: CURRENTUSERHANDLE banana

7.8.2 Search results

These are responses to the SEARCH command.
Number of search results will be limited to N (N can be set) in the future, not
limited at the moment. Possibly support for paging or custom range queries will
be added later.

User search
List of found users.

Syntax: USERS user1 [,user2] [,user3]
Example: USERS abc, -abc-, abc10

Fr iend search
List of found friends.

© Skype Technologies S.A. 8/37

Syntax: USERS user1 [,user2] [,user3]
Example: USERS tim, joe, mike

Cal l search
List of found call ID-s.

Syntax: CALLS id1 [,id2] [,id3]
Example: CALLS 15, 16, 39

Missed cal l search
List of found missed call ID-s.

Syntax: CALLS id1 [,id2] [,id3]
Example: CALLS 15, 16, 39

Message search
List of found message ID-s.

Syntax: MESSAGES id1 [,id2] [,id3]
Example: MESSAGES 15, 16, 39

Missed message search
List of found missed message ID-s.

Syntax: MESSAGES id1 [,id2] [,id3]
Example: MESSAGES 15, 16, 39

Chat search
List of found chat ID-s.

Syntax: CHATS id1 [,id2] [,id3]

Example: CHATS #test_2/$testtest20;54389d65f7d6f2c4,
#test_b/$testtest20;867c47704bcc71fb

Act ive chat search
List of found chat ID-s that are open in UI.

Syntax: CHATS id1 [,id2] [,id3]

Example: CHATS #test_2/$testtest20;54389d65f7d6f2c4,
#test_b/$testtest20;867c47704bcc71fb

Missed chat search
List of found chat ID-s that have unread messages in them.

Syntax: CHATS id1 [,id2] [,id3]

Example: CHATS #test_2/$testtest20;54389d65f7d6f2c4,
#test_b/$testtest20;867c47704bcc71fb

Recent chat search
List of found recent chat ID-s.

Syntax: CHATS id1 [,id2] [,id3]

Example: CHATS #test_2/$testtest20;54389d65f7d6f2c4,
#test_b/$testtest20;867c47704bcc71fb

© Skype Technologies S.A. 9/37

Bookmarked chat search
List of found bookmarked chat ID-s.

Syntax: CHATS id1 [,id2] [,id3]

Example: CHATS #test_2/$testtest20;54389d65f7d6f2c4,
#test_b/$testtest20;867c47704bcc71fb

7.8.3 Notifications

Notifications are sent by Skype either if the corresponding object changes, or if
the value of the property is asked with GET command. Also, if the prop value is
changed by SET command, the change is confirmed with a notification.
Notifications are sent about relevant objects - i.e. users in the buddylist, active
calls, active IMs.
The "PROP" is a property of corresponding object.

USER object
Notifies about user object properties.

Syntax: USER USERNAME PROP VALUE
USERNAME - username.
PROP - property name. Available properties are:

• HANDLE - username. Example: USER pamela HANDLE pamela.
• FULLNAME - user's full name. Example: USER pamela FULLNAME Jane

Doe.
• BIRTHDAY - user's birth date YYYYMMDD. Example: USER bitman

BIRTHDAY 19780329.
• SEX - example: USER pamela SEX UNKNOWN. Values:

• UNKNOWN - user has not specified sex in personal profile.
• MALE
• FEMALE

• LANGUAGE - language's name. Example: USER mike LANGUAGE
English. In protocol 4 with ISO prefix, example: USER mike LANGUAGE
en English.

• COUNTRY - country's name. Example: USER mike COUNTRY Estonia. In
protocol 4 with ISO prefix, example: USER mike COUNTRY ee Estonia.

• PROVINCE - example: USER mike PROVINCE Harjumaa.
• CITY - example: USER mike CITY Tallinn.
• PHONE_HOME - example: USER mike PHONE_HOME 3721111111.
• PHONE_OFFICE - example: USER mike PHONE_OFFICE 3721111111.
• PHONE_MOBILE - example: USER mike PHONE_MOBILE 3721111111.
• HOMEPAGE - example: USER mike HOMEPAGE http://www.joltid.com.
• ABOUT - example: USER mike ABOUT I am a nice person.
• HASCALLEQUIPMENT - returns always TRUE. Example: USER pamela

© Skype Technologies S.A. 10/37

HASCALLEQUIPMENT TRUE.
• BUDDYSTATUS - example: USER pamela BUDDYSTATUS 2. Possible

BUDDYSTATUS values:
• 0 - never been in contact list.
• 1 - deleted from contact list.
• 2 - pending authorisation.
• 3 - added to contact list.

• ISAUTHORIZED - is user authorized by current user. Example: USER
pamela ISAUTHORIZED TRUE. Values:

• TRUE
• FALSE

• ISBLOCKED - is user blocked by current user. Example: USER spammer
ISBLOCKED TRUE. Values:

• TRUE
• FALSE

• DISPLAYNAME - example: USER pamela DISPLAYNAME pam.
• ONLINESTATUS user online status. Example: USER mike

ONLINESTATUS ONLINE. Values:
• UNKNOWN - unknown user.
• OFFLINE - user is offline (not connected). Will also be returned if

current user is not authorized by other user to see his/her online
status.

• ONLINE - user is online.
• AWAY - user is away (has been inactive for certain period).
• NA - user is not available.
• DND - user is in "Do not disturb" mode.
• SKYPEOUT - user is in the SkypeOut contact list.
• SKYPEME (Protocol 2)

• LASTONLINETIMESTAMP - UNIX timestamp, available only for offline
user. Example USER mike LASTONLINETIMESTAMP 1078959579.

CALL object
Notifies about call object properties.

Syntax: CALL ID PROP VALUE
ID - call ID.
PROP - property name. Available properties are:

• TIMESTAMP - time, when call was placed (UNIX timestamp). Example:
CALL 17 TIMESTAMP 1078958218

• PARTNER_HANDLE - example: CALL 17 PARTNER_HANDLE mike

© Skype Technologies S.A. 11/37

• PARTNER_DISPNAME - example: CALL 17 PARTNER_DISPNAME
Mike Mann

• CONF_ID - if CONF_ID>0 then it is conference call. Example: CALL 17
CONF_ID 0

• TYPE - call type. Example: CALL 17 TYPE OUTGOING_PSTN. Possible
TYPE values:

• INCOMING_PSTN - incoming call from PSTN.
• OUTGOING_PSTN - outgoing call to PSTN.
• INCOMING_P2P - incoming call from P2P.
• OUTGOING_P2P - outgoing call to P2P.

• STATUS - call status. Example: CALL 17 STATUS FAILED. Possible
STATUS values:

• UNPLACED - call was never placed.
• ROUTING - call is currently being routed.
• EARLYMEDIA - with the pstn there is possibility that before the call

is actually established, the early media is being played. For
example it can be a calling tone or it can be some waiting message
(all operators are busy, hold on for a sec) etc.

• FAILED - call failed. Try to get FAILUREREASON for more
information.

• RINGING - currently ringing.
• INPROGRESS - call is in progress.
• ONHOLD - call is placed on hold.
• FINISHED - call is finished.
• MISSED - call was missed.
• REFUSED - call was refused.
• BUSY - destination was busy i.e. pressed hang up button.
• CANCELLED (Protocol 2)

• FAILUREREASON - example: CALL 17 FAILUREREASON 1 (numeric).
• SUBJECT - not used.
• PSTN_NUMBER - example: CALL 17 PSTN_NUMBER 372123123.
• DURATION - example: CALL 17 DURATION 0.
• PSTN_STATUS - error string from gateway, in case of PSTN-call.

Example: CALL 26 PSTN_STATUS 6500 PSTN connection creation
timeout.

• CONF_PARTICIPANTS_COUNT - number of non-hosts in case of
conference call. Possible values:

• 0 - call is not a conference. For host

© Skype Technologies S.A. 12/37

CONF_PARTICIPANTS_COUNT is always 0.
• 1 - call is former conference.
• 2, 3, 4 - call is conference.

• CONF_PARTICIPANT n - conference's n-th participant's handle, call type
and status and participant's displayname (for non-host only). Example:
CALL 59 CONF_PARTICIPANT 1 echo123 INCOMING_P2P
INPROGRESS Echo Test Service.

MESSAGE object
Notifies about message object properties.

Syntax: MESSAGE ID PROP VALUE
ID - message ID.
PROP - property name. Available properties are:

• TIMESTAMP - time, when message was sent (UNIX timestamp).
Example: MESSAGE 21 TIMESTAMP 1078958218

• PARTNER_HANDLE - example: MESSAGE 21 PARTNER_HANDLE
mike

• PARTNER_DISPNAME - example: MESSAGE 21
PARTNER_DISPNAME Mike Mann

• CONF_ID - not used.
• TYPE - message type. Example: MESSAGE 21 TYPE TEXT. Possible

TYPE values:
• AUTHREQUEST - authorization request.
• TEXT - IM or topic set.
• CONTACTS - contacts data.
• UNKNOWN - other.

• STATUS - message status. Example: MESSAGE 21 STATUS QUEUED.
Possible STATUS values:

• SENDING - message is being sent.
• SENT - message was sent.
• FAILED - message sending failed. Try to get FAILUREREASON for

more information.
• RECEIVED - message has been received.
• READ - message has been read.
• IGNORED - message was ignored.
• QUEUED - message is queued.

• FAILUREREASON - example: MESSAGE 21 FAILUREREASON 1
(numeric).

• BODY - message body. Example: MESSAGE 21 BODY Hi, what's up?

© Skype Technologies S.A. 13/37

CHATMESSAGE object
Notifies about chatmessage object properties.

Syntax: CHATMESSAGE ID PROP VALUE
ID - chatmessage ID.
PROP - property name. Available properties are:

• TIMESTAMP - time, when message was sent (UNIX timestamp).
Example: MESSAGE 21 TIMESTAMP 1078958218

• PARTNER_HANDLE - example: CHATMESSAGE 21
PARTNER_HANDLE mike

• PARTNER_DISPNAME - example: CHATMESSAGE 21
PARTNER_DISPNAME Mike Mann

• TYPE - message type. Example: MESSAGE 21 TYPE TEXT. Possible
TYPE values:

• SETTOPIC - chat's topic change.
• SAID - IM.
• ADDEDMEMBERS - invited someone to chat.
• SAWMEMBERS - chat participant has seen the other members.
• CREATEDCHATWITH - chat to multiple people is created.
• LEFT - someone left chat; also notification if somebody cannot be

added to chat.
• UNKNOWN - other.

• STATUS - message status. Example: MESSAGE 21 STATUS QUEUED.
Possible STATUS values:

• SENDING - message is being sent.
• SENT - message was sent.
• RECEIVED - message has been received.
• READ - message has been read.

• LEAVEREASON - used with LEFT-type message. Example:
CHATMESSAGE 21 LEAVEREASON UNSUBSCRIBE. Possible
LEAVEREASON values:

• USER_NOT_FOUND - user was not found.
• USER_INCAPABLE - user has older Skype version and cannot join

multichat.
• ADDER_MUST_BE_FRIEND - recipient accepts messages from

contacts only and sender is not in his/her Contact list.
• ADDED_MUST_BE_AUTHORIZED - recipient accepts messages

from authorized users only and sender is not authorized.
• UNSUBSCRIBE - participant left chat.

• BODY - message body. Example: CHATMESSAGE 21 BODY Hi, what's

© Skype Technologies S.A. 14/37

up?
• CHATNAME - chat that includes the message, example:

#test_3/$b17eb511457e9d20
• USERS - people added to chat.

CHAT object (protocol 3)
Notifies about chat object properties.

Syntax: CHAT ID PROP VALUE
ID - chat ID.
PROP - property name. Available properties are:

• NAME - chat ID. Example: CHAT #test_l/$6a072ce5537c4044 NAME
#test_l/$6a072ce5537c4044

• TIMESTAMP - time, when chat was created. Example: CHAT
#test_l/$6a072ce5537c4044 TIMESTAMP 1078958218.

• ADDER - user who added current user to chat. Example: CHAT
1078958218 ADDER k6rberebane.

• STATUS - chat status. Example: CHAT #test_l/$6a072ce5537c4044
STATUS MULTI_SUBSCRIBED. Possible STATUS values:

• LEGACY_DIALOG - old style IM.
• DIALOG - 1:1 chat.
• MULTI_SUBSCRIBED - participant in chat.
• UNSUBSCRIBED - left from chat.

• POSTERS - members who have posted messages. Example: CHAT
#test_l/$6a072ce5537c4044 POSTERS k6rberebane test_3

• MEMBERS - all users who have been there. Example: CHAT
#test_l/$6a072ce5537c4044 MEMBERS k6rberebane test test_2 test_3

• TOPIC - chat topic. Example: CHAT #test_l/$6a072ce5537c4044 TOPIC
API testimine

• CHATMESSAGES - all messages ID-s in this chat. Example: CHAT
#test_l/$6a072ce5537c4044 CHATMESSAGES 34, 35, 36, 38, 39

• ACTIVEMEMBERS - members who have stayed in chat. Example: CHAT
#test_l/$6a072ce5537c4044 ACTIVEMEMBERS k6rberebane test_2
test_3

• FRIENDLYNAME - name shown in chat window title. Example: CHAT
#test_l/$6a072ce5537c4044 FRIENDLYNAME Test Test XX | tere ise ka

CALL HISTORY
Notifies about call history being changed and that it needs to be reloaded.
Happens, when all of the call history or a selection of it has been deleted.

Syntax: CALLHISTORYCHANGED

IM HISTORY
Notifies about instant message history being changed and that it needs to be

© Skype Technologies S.A. 15/37

reloaded. Right now it only happens, when all of the IM history is deleted.

Syntax: IMHISTORYCHANGED

BUDDYSTATUS
Notifies if some user is added to or deleted from contacts or has authorized
current user.

Syntax: USER username BUDDYSTATUS number

Example:

User has been added to contacts, pending
authorisation.
USER pamela BUDDYSTATUS 2
User has authorized current user.
USER pamela BUDDYSTATUS 3
User has been deleted from contacts.
USER pamela BUDDYSTATUS 1

7.8.4 Other

Input-output devices can be set for Skype. Setting device with empty name
selects Windows default device. Successful setting is confirmed with AUDIO_*
[device].
Current active devices can be queried with GET AUDIO_IN|AUDIO_OUT.
AUDIO_* will return an empty answer, when the default device is selected.

Audio input device

Syntax: AUDIO_IN[device name] (deprecated)
SET AUDIO_IN[device name]

Example: AUDIO_IN SB Audigy 2 ZS Audio [DC00] (deprecated)
SET AUDIO_IN SB Audigy 2 ZS Audio [DC00]

Audio output device

Syntax: AUDIO_OUT[device name] (deprecated)
SET AUDIO_OUT[device name]

Example: AUDIO_OUT SB Audigy 2 ZS Audio [DC00] (deprecated)
SET AUDIO_OUT SB Audigy 2 ZS Audio [DC00]

7.9From Device to Skype

7.9.1 Initiating searches

SEARCH WHAT [target] requests a specific type of information about the target.
If no target is specified, then all results are returned.
WHAT specifies the information type and may be one of the following: USERS,
FRIENDS, CALLS, MISSEDCALLS, ACTIVECALLS, MESSAGES,
MISSEDMESSAGES, (protocol 3: CHATS, ACTIVECHATS, MISSEDCHATS,
RECENTCHATS, BOOKMARKEDCHATS, CHATMESSAGES,
MISSEDCHATMESSAGES).
Note: Currently search commands are synchronous. This may change in the
future.

© Skype Technologies S.A. 16/37

Note: Next search expires last search. This means that if one search is still
running, and new search is submitted, the first search will abort.

Search f r iends

Syntax: SEARCH FRIENDS
Returns: Returns a list of usernames, if match is found.
Example: SEARCH FRIENDS

Returns all friends of the current user. Example result:
USERS tim, joe, mike

Errors: ERROR 67 target not allowed with SEARCH FRIENDS
Target was specified with SEARCH FRIENDS command (e.g.
"SEARCH FRIENDS mike")

Search users

Syntax: SEARCH USERS TARGET
TARGET - username. If the search string contains "@", then search is performed
by e-mail address (note that e-mail address has to match 100%). Otherwise, if
the search string is a valid Skype username (username must have 6-22
characters, contains only the following symbols: a-Z0-9-_,. and it must start with
a letter), the search is performed on the full name and username fields. In all
other cases the search is made on full name field only.

Returns: Returns the matching usernames.
Example: SEARCH USERS abc

Returns all usernames that have "abc" in them. Example
result:
USERS abc, -abc-, abc10

Errors: ERROR 4 empty target not allowed
Target username is not specified

Search cal ls

Syntax: SEARCH CALLS TARGET
TARGET - username. Target is optional. If target is specified then call history
between current user and target user is searched.

Returns: Returns a list of call ID-s. If target is specified, then returns ID-s of all
calls that have been made between current and target user.

Example: SEARCH CALLS abc
Example result:
CALLS 15, 16, 39

Errors: ERROR 5 SEARCH CALLS: invalid target
Not permitted characters were used in the target username (e.g.
"SEARCH CALLS !a"). Username must have 6-22 characters and can
contain only the following symbols: a-Z0-9-_,..

Search act ive cal ls

Syntax: SEARCH ACTIVECALLS
Lists all calls visible on calltabs, including members of conference calls if hosting
a conference.

© Skype Technologies S.A. 17/37

Returns: Returns a list of active call ID-s.
Example: SEARCH ACTIVECALLS

Example result:
CALLS 25, 56

Errors: ERROR 3 SEARCH: invalid WHAT
ACTIVECALLS was misspelled.

Search missed cal ls

Syntax: SEARCH MISSEDCALLS
Returns: Returns a list of missed call ID-s, calls in MISSED

status.
Example: SEARCH MISSEDCALLS

Example result:
CALLS 25, 56

Errors: ERROR 29 target not allowed with MISSEDCALLS
No target is allowed with SEARCH MISSEDCALLS.

Search messages

Syntax: SEARCH MESSAGES [TARGET]
TARGET - username. Target is optional. If target is specified then messages
history between current user and target user is searched.

Returns: Returns a list of message ID-s. If target is specified, then returns ID-s
of all messages that have been sent between current and target user.

Example: SEARCH MESSAGES abc
Example result:
MESSAGES 123, 124

Errors: ERROR 29 SEARCH MESSAGES: invalid target
Not permitted character was used in the target username (e.g.
"SEARCH MESSAGES !a"). Username must have 6-22 characters
and can contain only the following symbols: a-Z0-9-_,..

Search missed messages

Syntax: SEARCH MISSEDMESSAGES
Returns: Returns a list of message ID-s.
Example: SEARCH MISSEDMESSAGES

Example result:
MESSAGES 123, 124

Errors: ERROR 6 target not allowed with MISSEDMESSAGES
No target is allowed with SEARCH MISSEDMESSAGES.

Search chats (PROTOCOL 3)

Syntax: SEARCH CHATS
Returns: Returns a list of chat ID-s.
Example: SEARCH CHATS

Example result:
CHATS #bitman/$jessy;eb06e65612353279,
#bitman/$jdenton;9244e98f82d7d391

© Skype Technologies S.A. 18/37

Errors: ERROR 107 target not allowed with CHATS
No target is allowed with SEARCH CHATS.

Search act ive chats (PROTOCOL 3)

Syntax: SEARCH ACTIVECHATS
Returns: Returns a list of chat ID-s that are open in UI.
Example: SEARCH ACTIVECHATS

Example result:
CHATS #bitman/$jessy;eb06e65612353279,
#bitman/$jdenton;9244e98f82d7d391

Errors: ?

Search missed chats (PROTOCOL 3)

Syntax: SEARCH MISSEDCHATS
Returns: Returns a list of chat ID-s that include unread messages.
Example: SEARCH MISSEDCHATS

Example result:
CHATS #bitman/$jessy;eb06e65612353279,
#bitman/$jdenton;9244e98f82d7d391

Errors: ?

Search recent chats (PROTOCOL 3)

Syntax: SEARCH RECENTCHATS
Returns: Returns a list of recent chat ID-s.
Example: SEARCH RECENTCHATS

Example result:
CHATS #bitman/$jessy;eb06e65612353279,
#bitman/$jdenton;9244e98f82d7d391

Errors: ?

Search bookmarked chats (PROTOCOL 3)

Syntax: SEARCH BOOKMARKEDCHATS
Returns: Returns a list of bookmarked chat ID-s.
Example: SEARCH BOOKMARKEDCHATS

Example result:
CHATS #bitman/$jessy;eb06e65612353279,
#bitman/$jdenton;9244e98f82d7d391

Errors: ?

Search chat messages (PROTOCOL 3)

Syntax: SEARCH CHATMESSAGES [TARGET]
TARGET - username. Target is optional. Actually users never use it.

Returns: Returns a list of chat message ID-s.
Example: SEARCH CHATMESSAGES abc

Example result:
CHATMESSAGES 60, 59

© Skype Technologies S.A. 19/37

Errors: ERROR 29 SEARCH CHATMESSAGES: invalid target
Not permitted character was used in the target username (e.g.
"SEARCH MESSAGES !a"). Username must have 6-22 characters
and can contain only the following symbols: a-Z0-9-_,..

Search missed chat messages (PROTOCOL 3)

Syntax: SEARCH MISSEDCHATMESSAGES
Returns: Returns a list of missed chat message ID-s.
Example: SEARCH MISSEDCHATMESSAGES

Example result:
CHATMESSAGES 61, 62

Errors: ERROR 29 target not allowed with MISSEDMESSAGES
No target is allowed with SEARCH
MISSEDCHATMESSAGES.

7.9.2 Getting parameter value

GET command is a general request command. One can request one property at
a time for any known object (USER, CALL, MESSAGE, (PROTOCOL 3: CHAT,
CHATMESSAGE)) or a general variable (USERSTATUS, CONNSTATUS,
AUDIO_IN, AUDIO_OUT, CURRENTUSERHANDLE, MUTE). Skype responds
with appropriate notification command.

USER object in format ion

Syntax: GET USER USERNAME PROP
USERNAME - username. Username must have 6-22 characters and can only
contain the following symbols: a-Z0-9-_,..
PROP - property name. Available properties are:
HANDLE, FULLNAME, BIRTHDAY, SEX, LANGUAGE, COUNTRY,
PROVINCE, CITY, PHONE_HOME, PHONE_OFFICE, PHONE_MOBILE,
HOMEPAGE, ABOUT, HASCALLEQUIPMENT, BUDDYSTATUS,
ISAUTHORIZED, ISBLOCKED, DISPLAYNAME, ONLINESTATUS,
LASTONLINETIMESTAMP

Returns: Returns property value for specified user, if match is found.
Example: GET USER pamela FULLNAME

Example result:
USER pamela FULLNAME Jane Doe

Errors: ERROR 7 GET: invalid WHAT
Object name missing or misspelled (e.g. "GET USE").
ERROR 10 invalid prop
ID and/or property missing or misspelled (e.g. "GET USER pamela
FULLNAM").
ERROR 8 invalid handle
USERNAME missing or includes a not permitted character (e.g.
"GET USER ! HANDLE").

Note GET USER USERNAME ONLINESTATUS will return "OFFLINE" unless
current user is authorized by other user to see his/her online status.

© Skype Technologies S.A. 20/37

CALL object informat ion

Syntax: GET CALL ID PROP
ID - call ID
PROP - property name. Available properties are:
TIMESTAMP (UNIX timestamp), PARTNER_HANDLE, PARTNER_DISPNAME,
CONF_ID, TYPE, STATUS, FAILUREREASON (numeric), SUBJECT (not
used), PSTN_NUMBER, DURATION, PSTN_STATUS, CONF_PARTICIPANT
n, CONF_PARTICIPANTS_COUNT

Returns: Returns property value for specified call, if call is found.
Example: GET CALL 1594 TYPE

Example result:
CALL 1594 TYPE OUTGOING_P2P

Errors: ERROR 7 GET: invalid WHAT
Object name missing or misspelled (e.g. "GET CAL").
ERROR 11 invalid call id
ID includes other than numeric characters (e.g. "GET CALL 15!").
ERROR 12 unknown call id
Call with specified ID does not exist in current user's call history.
ERROR 13 invalid prop
Property name missing or misspelled (e.g. "GET CALL 15 TYP").
ERROR 71 Invalid conference participant NO
Conference participant's number is not number or too big (e.g. "GET
CALL 15 CONF_PARTICIPANT kala", "GET CALL 15
CONF_PARTICIPANT 5")

Note Skype notifies API, if unseen call gets seen i.e. SEEN=FALSE changes to
SEEN=TRUE e.g. user clicks on the missed call in Skype.

MESSAGE object informat ion

Syntax: GET MESSAGE ID PROP
ID - message ID
PROP - property name. Available properties are:
TIMESTAMP (UNIX timestamp), PARTNER_HANDLE, PARTNER_DISPNAME,
CONF_ID (not used), TYPE, STATUS, FAILUREREASON (numeric), BODY

Returns: Returns property value for specified message, if message is found.
Example: GET MESSAGE 159 TYPE

Example result:
MESSAGE 159 TYPE TEXT

Errors: ERROR 7 GET: invalid WHAT
Object name missing or misspelled (e.g. "GET MESAGE").
ERROR 14 invalid message id
ID includes other than numeric characters (e.g. "GET MESSAGE
1a").
ERROR 15 unknown message id
Message with specified ID does not exist in current user's message
history.
ERROR 16 invalid prop
Property name missing or misspelled (e.g. "GET MESSAGE 21
TYP").

© Skype Technologies S.A. 21/37

User status

Syntax: GET USERSTATUS
Returns: Returns status for current user. Possible values:

UNKNOWN, OFFLINE, ONLINE, SKYPEME (Protocol 2), AWAY,
NA, DND, INVISIBLE.

Example: GET USERSTATUS
Example result:
USERSTATUS ONLINE

Errors: ERROR 7 GET: invalid WHAT
Object name missing or misspelled (e.g. "GET USESTATUS").

Connect ion sta tus

Syntax: GET CONNSTATUS
Returns: Returns current connection status. Possible values:

OFFLINE, CONNECTING, PAUSING, ONLINE.
Example: GET CONNSTATUS

Example result:
CONNSTATUS ONLINE

Errors: ERROR 7 GET: invalid WHAT
Object name missing or misspelled (e.g. "GET
CONSTATUS").

Audio input device

Syntax: GET AUDIO_IN
Returns: Returns current audio input device for Skype.
Example: GET AUDIO_IN

Example result:
AUDIO_IN SB Audigy 2 ZS Audio [DC00]

Errors: ERROR 7 GET: invalid WHAT
Object name missing or misspelled (e.g. "GET
AUDO_IN").

Audio output device

Syntax: GET AUDIO_OUT
Returns: Returns current audio output device for Skype.
Example: GET AUDIO_OUT

Example result:
AUDIO_OUT SB Audigy 2 ZS Audio [DC00]

Errors: ERROR 7 GET: invalid WHAT
Object name missing or misspelled (e.g. "GET
AUDIO_OT").

Current user handle

Syntax: GET CURRENTUSERHANDLE
Returns: Returns handle for current user.
Example: GET CURRENTUSERHANDLE

Example result:
CURRENTUSERHANDLE banana

© Skype Technologies S.A. 22/37

Errors: ERROR 7 GET: invalid WHAT
Object name missing or misspelled (e.g. "GET
CURENTUSERHANDLE").

Mute status

Syntax: GET MUTE
Returns: Returns mute status: MUTE ON or MUTE OFF. If there is no calls in

status INPROGRESS, MUTE is always OFF.
Example: GET MUTE

Example result:
MUTE OFF

Errors: ERROR 7 GET: invalid WHAT
Object name missing or misspelled (e.g. "GET MUT").

User pr iv i leges

Syntax: GET PRIVILEGE [PRIVILEGE]
PRIVILEGE - privilege name. Available privileges are:
SKYPEOUT

Returns: Returns TRUE, if user has privilege, and FALSE otherwise.
Example: GET PRIVILEGE SKYPEOUT

Example result:
PRIVILEGE SKYPEOUT TRUE

Errors: ERROR 7 GET: invalid WHAT
Object name missing or misspelled (e.g. "GET PIVILEGE").
ERROR 40 unknown privilege
Privilege is either misspelled or does not exist (e.g. "GET PRIVILEGE
SKYPEOUT").

User prof i le

Syntax: GET PROFILE [PROP]
PROP - profile property. Available properties are:
PSTN_BALANCE - SkypeOut balance in EUR cents.
PSTN_BALANCE_CURRENCY - SkypeOut currency. Only possible currency is
EUR.

Returns: PSTN_BALANCE_CURRENCY returns PROFILE
PSTN_BALANCE_CURRENCY EUR, if user has SkypeOut privilege,
and PROFILE PSTN_BALANCE_CURRENCY otherwise.

Example: GET PROFILE PSTN_BALANCE
Example result:
PROFILE PSTN_BALANCE 109

Example: GET PROFILE PSTN_BALANCE_CURRENCY
Example result:
PROFILE PSTN_BALANCE_CURRENCY EUR

© Skype Technologies S.A. 23/37

Errors: ERROR 7 GET: invalid WHAT
Object name missing or misspelled (e.g. "GET PROFIIL").
ERROR 10 Invalid PROP
Property is either misspelled or does not exist (e.g. "GET PROFILE
PSTN_BALANSS").

Skype vers ion

Syntax: GET SKYPEVERSION
Returns: Returns Skype version.
Example: GET SKYPEVERSION

Example result:
SKYPEVERSION 1.0.0.34

Errors: ERROR 7 GET: invalid WHAT
Object name missing or misspelled (e.g. "GET
SKYPVERSION").

CHAT object in format ion (PROTOCOL 3)

Syntax: GET CHAT ID PROP
ID - chat ID.
PROP - property name. Available properties are:
NAME, TIMESTAMP, ADDER, STATUS, POSTERS, MEMBERS, TOPIC,
CHATMESSAGES, ACTIVEMEMBERS, FRIENDLYNAME

Returns: Returns property value for specified chat, if match is found. STATUS
values:
LEGACY_DIALOG, DIALOG, MULTI_SUBSCRIBED,
UNSUBSCRIBED

Example: GET CHAT #bitman/$jessy;eb06e65635359671 NAME
Example result:
CHAT #bitman/$jessy;eb06e65635359671 NAME
#bitman/$jessy;eb06e65635359671

Errors: ERROR 7 GET: invalid WHAT
Object name missing or misspelled (e.g. "GET CHTA ").
ERROR 105 invalid chat name
Error in the CHATNAME parameter.
ERROR 106 invalid PROP
Property name missing or misspelled.

CHATMESSAGE object in format ion (PROTOCOL 3)

Syntax: GET CHATMESSAGE ID PROP
ID - chat message ID.
PROP - property name. Available properties are:
CHATNAME, TIMESTAMP, FROM_HANDLE, FROM_DISPNAME, TYPE,
USERS, LEAVEREASON, BODY, STATUS

© Skype Technologies S.A. 24/37

Returns: Returns property value for specified chat message, if match is found.
TYPE values:
SETTOPIC, SAID, ADDEDMEMBERS, SAWMEMBERS,
CREATEDCHATWITH, LEFT, UNKNOWN
LEAVEREASON values:
USER_NOT_FOUND, USER_INCAPABLE,
ADDER_MUST_BE_FRIEND, ADDED_MUST_BE_AUTHORIZED,
UNSUBSCRIBE
STATUS values:
SENDING, SENT, RECEIVED, READ

Example: GET CHATMESSAGE 60 CHATNAME
Example result:
CHATMESSAGE 60 CHATNAME
#bitman/$jessy;eb06e65631239671

Errors: ERROR 7 GET: invalid WHAT
Object name missing or misspelled (e.g. "GET CHTAMESSAGE 60
CHATNAME").
ERROR 14 invalid message id
Chat message ID contain not permitted symbols (only numeric are
permitted) (e.g. "GET CHATMESSAGE a")
ERROR 15 unknown message id
Unknown chat message ID
ERROR 16 invalid PROP
Property name missing or misspelled (e.g. "GET CHATMESSAGE
60")

7.9.3 Setting parameter value

SET command is a general update command. Syntactically it can be applied to
objects (CALL, USER, MESSAGE) and general variables (USERSTATUS). One
can update one property at a time for any known object. Skype responds with
appropriate notification command as a confirmation.
Note: Most properties are read-only.

CALL object informat ion

Syntax: SET CALL ID PROP VALUE
ID - call ID (numeric)
PROP - property name. Writable properties for call:

• STATUS - for call control. Available values:
• ONHOLD - hold call
• INPROGRESS - answer or resume call
• FINISHED - hang up call

• SEEN - sets call seen, meaning that this missed call is seen and will be
removed from missed calls list.

• DTMF - sends VALUE as DTMF. Permitted symbols in VALUE are:
{0..9,#,*}.

• JOIN_CONFERENCE - joins call with another call into conference.

© Skype Technologies S.A. 25/37

VALUE is another call's ID.

Returns: Returns (new) value of the property or an error message.
Example: SET CALL 15 SEEN

Example result:
CALL 15 SEEN TRUE

Errors: ERROR 18 SET: invalid WHAT
Object name missing or misspelled (e.g. "SET CAL").
ERROR 19 invalid call id
ID includes other than numeric characters (e.g. "SET CALL A").
ERROR 20 unknown call id
Call with specified ID does not exist in current user's call history nor is
active.
ERROR 21 unknown prop
Value incorrect or misspelled (e.g. "SET CALL 15 STATUS
ONHOL").
ERROR 22 cannot hold
Given call is not in progress and therefore can not be hold.
ERROR 23 cannot resume/answer
Given call is not in progress and therefore can not be
resumed/answered.
ERROR 24 cannot hangup
Given call is not in progress and therefore can not be hung up.
ERROR 25 invalid WHAT
Property name missing or misspelled (e.g. "SET CALL 15 STATU
ONHOLD").
ERROR 72 Cannot create conference
Creating conference, e.g. "SET CALL 65 JOIN_CONFERENCE 66"
fails on some reason.

MESSAGE object informat ion

Syntax: SET MESSAGE ID PROP
ID - message ID (numeric)
PROP - property name. Writable properties for message:

• SEEN - meaning that this missed IM is seen and will be removed from
missed messages list. UI will set this automatically if auto-popup is
enabled for corresponding group of users.

Returns: Returns (new) value of the property or an error message. If value can
not be changed then the current value of property is returned.

Example: SET MESSAGE 1578 SEEN
Example result:
MESSAGE 1578 STATUS READ

© Skype Technologies S.A. 26/37

Errors: ERROR 18 SET: invalid WHAT
Object name missing or misspelled (e.g. "SET CAL").
ERROR 30 invalid message id
ID includes other than numeric characters (e.g. "SET MESSAGE A").
ERROR 31 unknown message id
Message with specified ID does not exist in current user's message
history.
ERROR 32 invalid WHAT
Property name missing or misspelled (e.g. "SET MESSAGE 21
SEN").

User status

Syntax: SET USERSTATUS VALUE
VALUE - value for user status. Available values:

• ONLINE - set current user status "online"
• OFFLINE - set current user status "offline"
• SKYPEME - set current user status "Skype Me" (Protocol 2)
• AWAY - set current user status "away"
• NA - set current user status "NA"
• DND - set current user status "DND"
• INVISIBLE - set current user status "INVISIBLE"

Returns: Returns (new) value of the property or an error message.
Example: SET USERSTATUS INVISIBLE

Example result:
USERSTATUS INVISIBLE

Errors: ERROR 18 SET: invalid WHAT
USERSTATUS command missing or misspelled (e.g. "SET CAL").
ERROR 28 SET USERSTATUS: unknown status
Unknown or misspelled value for user status (e.g. "SET
USERSTATUS RICH").

Mute status

Syntax: SET MUTE VALUE
VALUE - Sets mute on or off. Works only if call is in status INPROGRESS.
Available values:

• ON - set mute on
• OFF - set mute off

Returns: Returns (new) value of the property or an error message.
Example: SET MUTE ON

Example result:
MUTE ON

© Skype Technologies S.A. 27/37

Errors: ERROR 18 SET: invalid WHAT
Mute command missing or misspelled (e.g. "SET MUT").
ERROR 33 invalid parameter
Unknown or misspelled value for mute (e.g. "SET MUTE
O").

Chat message s tatus

Syntax: SET CHATMESSAGE ID SEEN
ID - chat message ID.

Returns: Returns (new) value for chat message status.
Example: SET CHATMESSAGE 61 SEEN

Example result:
CHATMESSAGE 61 STATUS SEEN

Errors: ERROR 18 SET: invalid WHAT
CHATMESSAGE command missing or misspelled (e.g. "SET
CHATMESAGE").
ERROR 31 unknown message id
Unknown chat message ID
ERROR 30 invalid message id
Chat message ID is misspelled i.e. contains not permitted symbols
(numeric are permitted) (e.g. "SET CHATMESSAGE a SEEN")
ERROR 32 invalid WHAT
Invalid status given to chat message (e.g. "SET CHATMESSAGE 60
SEENA")

7.9.4 Making calls

Syntax: CALL TARGET [, TARGET2, TARGET3...]
TARGET - target to be called. In case of multiple targets conference is created.
Available target types:

• USERNAME - username, e.g. "pamela"
• PSTN - phone number, e.g. "003725555555"
• SPEED DIAL CODE - 1 or 2 character speed-dial code

Returns: Returns call ID and status.
Example: CALL pamela

Example result:
CALL 49 STATUS ROUTING
CALL 49 STATUS RINGING
CALL 49 STATUS REFUSED

Errors: ERROR 34 invalid user handle
Target username/number missing (e.g. "CALL ").
ERROR 39 user blocked
Not really a call failure, but API misuse - trying to call to a blocked
user.
ERROR 73 too many participants
Call is initiated to more than 4 people (e.g. "CALL test, test_2, test_3,
test_4, test_5").

© Skype Technologies S.A. 28/37

Skype window is focused when call is initiated through API. It is possible to make
speed dial via API.

Cal l error codes

Code Description Possible reason
1 CALL 181

FAILUREREASO
N 1

Misc error.

2 CALL 181
FAILUREREASO

N 2

User/phone number does not exist. Check phone
number prefix (e.g. correct "003725555555",
"+3725555555"; incorrect "3725555555").

3 CALL 181
FAILUREREASO

N 3

User is offline.

4 CALL 181
FAILUREREASO

N 4

No proxy found.

5 CALL 181
FAILUREREASO

N 5

Session terminated.

6 CALL 181
FAILUREREASO

N 6

No common codec found.

7 CALL 181
FAILUREREASO

N 7

Sound I/O error.

8 CALL 181
FAILUREREASO

N 8

Problem with remote sound device.

9 CALL 181
FAILUREREASO

N 9

Call blocked by recipient.

10 CALL 181
FAILUREREASO

N 10

Recipient not a friend.

11 CALL 181
FAILUREREASO

N 11

Current user not authorized by recipient.

12 CALL 181
FAILUREREASO

N 12

Sound recording error.

7.9.5 Sending messages

Syntax: MESSAGE USERNAME TEXT
USERNAME - username, whom to send message, e.g. "pamela"
TEXT - message body, e.g. "Please call me"

Returns: Returns message ID and status.

© Skype Technologies S.A. 29/37

Example: MESSAGE pamela Please call me
Example result:
MESSAGE 136 STATUS SENDING
MESSAGE 136 STATUS SENT

Errors: ERROR 26 invalid user handle
Target username missing or includes not permitted symbols (e.g.
"MESSAGE ")
MESSAGE 138 STATUS RECEIVED
When message sending fails, a LEFT-type message is received.
Message's LEAVEREASON shows why it failed.

7.9.6 Opening dialogs

Add a Contact

Syntax: OPEN ADDAFRIEND
Example: OPEN ADDAFRIEND

Add a Contact dialog will pop up.
Errors: ERROR 69 invalid open what

Open target is missing or misspelled (e.g. "OPEN
ADDFRIEND").

Command is echoed back to API when successful.

Ins tan t Message

Syntax: OPEN IM USERNAME [MESSAGE]
USERNAME - username, whom to send the message, e.g. "pamela"
MESSAGE - message body, e.g. "Please call me". It will be prefilled into the IM
dialog window

Example: OPEN IM jdenton Testing
IM dialog will pop up, with text "Testing" already filled in as message
text.

Errors: ERROR 69 invalid open what
Open target is missing or misspelled (e.g. "OPEN IN").
ERROR 70 SET: invalid handle
Username is missing or contains not permitted symbols

Command is echoed back to API when successful.

Chat

Syntax: OPEN CHAT TARGET [, TARGET2, TARGET3 ...]
TARGET - username to include to chat, e.g. "pamela". If only one TARGET is
given, a dialog in opened

Returns: CHAT id STATUS SUBSCRIBED when successful.
Example: OPEN CHAT jdenton, test_bi, pamela

"CHAT #name/$843934 STATUS SUBSCRIBED", Chat window will
pop up, with specified members in the right.

Errors: ERROR 69 invalid open what
??.
ERROR 70 SET: invalid handle
Username is missing or contains not permitted symbols

© Skype Technologies S.A. 30/37

Command is echoed back to API when successful.

7.9.7 Focus Skype window

Syntax: FOCUS
Example: FOCUS

Brings Skype window on top.
Errors: ERROR 2 unknown command

FOCUS command is missing or misspelled (e.g.
"FCOUS").

7.9.8 Test connection

Syntax: PING
Returns: PONG if Skype is present.
Example: PING

Query connection status.
Errors: ERROR 2 unknown command

PING command is missing or misspelled (e.g.
"PNIG").

7.10Error codes
• ERROR CODE[DESC]

The error response is sent by Skype each time Skype senses an error condition,
which includes syntactically incorrect commands, internal inconsistencies etc.
CODE is a number that uniquely identifies error condition and the DESC is
optional brief description of the situation, given in English.
Currently the following error codes are defined:

Code Description Possible reasons
1 General syntax error Command missing (e.g. " " sent as command)
2 Unknown command Command spelled incorrect (e.g. "GRT" send

instead of "GET")
3 Search: unknown

WHAT
Search target is missing or misspelled

4 Empty target not
allowed

5 Search CALLS:
invalid target

Not permitted character (e.g. "!", "#", "¤", "€", "
" (space) etc.) was used in the target username (e.g.
"SEARCH CALLS !a")

6 Target not allowed
with
MISSEDCALLS

e.g. "SEARCH
MISSEDCALLS
echo123"

7 GET: invalid WHAT Object/property name missing or misspelled
8 Invalid user handle USERNAME missing or includes a not permitted

character (e.g. "GET USER ! HANDLE")
9 Unknown user

© Skype Technologies S.A. 31/37

10 Invalid PROP Property name and/or ID missing or misspelled
11 Invalid call id Call ID missing or misspelled (must be a numeric

value)
12 Unknown call Nonexistant call ID used
13 Invalid PROP Returned to command GET CALL id

PARTNER_DISPLAYNAME. Property name missing
or misspelled

14 Invalid message id GET - Message ID missing or misspelled (must be a
numeric value)

15 Unknown message Nonexistant message ID used in GET command
16 Invalid PROP Returned to command GET MESSAGE id

PARTNER_DISPLAYNAME. Property name missing
or misspelled

17 Not in use
18 SET: invalid WHAT Property name missing or misspelled
19 Invalid call id Call ID missing or misspelled (must be a numeric

value)
20 Unknown call Nonexistant call ID used
21 Unknown/disallowed

call prop
SET CALL value incorrect or misspelled (e.g. "SET
CALL 15 STATUS ONHOL")

22 Cannot hold this call
at the moment

Trying to hold a call that is not in progress.

23 Cannot resume this
call at the moment

Trying to resume/answer a call that is not in
progress.

24 Cannot hangup
inactive call

Trying to hang up a call that is not in progress.

25 Unknown WHAT Property name missing or misspelled (e.g. "SET
CALL 15 STATU ONHOLD")

26 Invalid user handle Target username missing or includes not permitted
symbols (e.g. "MESSAGE ")

27 Invalid version
number

28 Unknown userstatus Unknown or misspelled value for user status (e.g.
"SET USERSTATUS RICH")

29 Target not allowed
with
MISSEDMESSAGE
S

e.g. "SEARCH MISSEDMESSAGES echo123"

30 Invalid message id SET - Message ID missing or misspelled (must be a
numeric value)

31 Unknown message
id

Nonexistant message ID used in SET command

32 Invalid WHAT Prop missing or misspelled
33 Invalid parameter to

SET MUTE
Unknown or misspelled value for mute (e.g. "SET
MUTE O")

© Skype Technologies S.A. 32/37

34 Invalid user handle
to CALL

Target username/number missing (e.g. "CALL ")

35 Not connected
36 Not online
37 Not connected
38 Not online
39 User blocked Destination user is blocked by caller. Also given, if

trying to call to a blocked user
40 Unknown privilege Privilege is either misspelled or does not exist (e.g.

"GET PRIVILEGE SKYPEOUT").
41 Call not active Trying to send DTMF, when call is not active.
42 Invalid DTMF code Invalid DTMF code is sent. Valid symbols for DTMF

codes are {0..9,#,*}
43 cannot send empty

message
Empty message is tried to sent, e.g. "MESSAGE
echo123".

66 Not connected Skype is not connected i.e. user status is
"LOGGEDOUT"

67 Target not allowed
with SEARCH
FRIENDS

SEARCH FRIENDS had a parameter

68 Access denied
69 Invalid open what OPEN command had missing or misspelled

TARGET e.g. "OPEN IN"
70 Invalid handle OPEN IM parameter USERNAME is missing or

contains not permitted symbols
71 Invalid conference

participant NO
Conference participant's number is either too large
or invalid.

72 Cannot create
conference

73 too many
participants

Conference is initiated to more than 4 people.

91 Internal error Cannot call an emergency number
92 Internal error The called number is not a valid PSTN number
93 Internal error Invalid Skype Name
94 Internal error Cannot call yourself
95 Internal error Destination user is blocked by caller right after call

initialization
96 Internal error An outgoing call exists in

ROUTING/RINGING/EARLYMEDIA state
97 Internal error Internal error
98 Internal error Internal error
99 Internal error Internal error
100 Internal error Internal error
101 Internal error A call to the destination user is already ongoing

© Skype Technologies S.A. 33/37

103 Cannot hold Internal error
104 Cannot resume Internal error
105 Invalid chat name Chat name missing or misspelled
106 Invalid PROP Property name missing or misspelled for CHAT or

CHATMESSAGE
107 Target not allowed

with CHATS
No parameters allowed to SEARCH CHATS

9901 Internal error

7.11Sample Session
-> Device to Skype
<- Skype to Device
; comment
NB! Real transmission goes utf-8 encoded.
; Devices introduces himself & declares that it's ready
-> NAME HandSet 1.0
-> PROTOCOL 1
; -> READY (not implemented yet)
; Skype accepts/activates the device
<- PROTOCOL 1
; <- ENABLE YES (not implemented yet)
; Device asks for friends list
-> SEARCH FRIENDS
; Skype responds with the list
<- USERS kaido, taavet, toivo
; Device asks for fullname for all those in the friendslist
-> GET USER kaido FULLNAME
-> GET USER taavet FULLNAME
-> GET USER toivo FULLNAME
; Skype responds with data what was asked ...
<- USER kaido FULLNAME Kaido KΣrner
<- USER taavet FULLNAME
<- USER toivo FULLNAME Toivo Annus
; Device initiates a call to kaido
-> CALL kaido
; Skype indicates different call statuses
<- CALL 122211 STATUS ROUTING
; In the meantime, taavet went offline
<- USER taavet ONLINESTATUS OFFLINE
<- CALL 122211 STATUS RINGING
; Kaido picked up the call
<- CALL 122211 STATUS INPROGRESS
; Call is in progress ..
; Now device decides to hang up the call
-> SET CALL 122211 STATUS FINISHED
; Skype confirms ..
<- CALL 122211 STATUS FINISHED

© Skype Technologies S.A. 34/37

7.12Sample Session: incoming call
-> Device to Skype
<- Skype to Device
; comment
; Skype notifies of incoming call
<- CALL 1594 STATUS RINGING
; Device queries call type
-> GET CALL 1594 TYPE
<- CALL 1594 TYPE INCOMING_P2P
; Device queries callers username and fullname after this
-> GET CALL 1594 PARTNER_HANDLE
<- CALL 1594 PARTNER_HANDLE caller
-> GET USER caller FULLNAME
<- USER caller FULLNAME answer me
; Device accepts (answers the call)
-> SET CALL 1594 STATUS INPROGRESS
; Skype confirms
<- CALL 1594 STATUS INPROGRESS
; Skype tells the duration of the call (this is done before the call is ended
<- CALL 1594 DURATION 5
; Skype tells that the other party ended the call
<- CALL 1594 STATUS FINISHED

8 API TRANSPORT LAYERS
Both APIs are not bound to any specific transport-layer.

8.1API Transport on Windows messages
Currently the only API transport implementation is done on windows messages.
In the current implementation the external party is active and is responsible for
initiating the communication. The communication should be considered broken
when either party could not send any of the messages.
To initiate communication, Client should broadcast windows message
('SkypeControlAPIDiscover') to all windows in the system, specifying its own
window handle in wParam parameter. In response, Skype responds with
message 'SkypeControlAPIAttach' to the handle specified, and indicates
connection status with one of the following values in lParam:

• SKYPECONTROLAPI_ATTACH_SUCCESS = 0: Client is successfully
attached and API window handle can be found in wParam parameter;

• SKYPECONTROLAPI_ATTACH_PENDING_AUTHORIZATION = 1:
Skype has acknowledged connection request and is waiting for
confirmation from the user. The client is not yet attached and should wait
for SKYPECONTROLAPI_ATTACH_SUCCESS message;

• SKYPECONTROLAPI_ATTACH_REFUSED = 2: User has explicitly
denied access to client;

• SKYPECONTROLAPI_ATTACH_NOT_AVAILABLE = 3: API is not

© Skype Technologies S.A. 35/37

available at the moment. For example, this happens when no user is
currently logged in. Client should wait for
SKYPECONTROLAPI_ATTACH_API_AVAILABLE broadcast before
making any further connection attempts.

When API becomes available, Skype broadcasts SkypeControlAPIAttach
message with value SKYPECONTROLAPI_ATTACH_API_AVAILABLE =
0x8001 to all application windows in the system.
The actual data exchange uses standard WM_COPYDATA message. The data
being transferred is the command (or response), given as an null-terminated utf-
8 string. Note that the terminating 0 must be transferred as well. Combining
several messages to one packet is not allowed. Length of the transferred string
is not limited by this protocol.
Skype will not block after having received a message. If sending a message
using SendMessage() fails this indicates that the communication channel is
broken.
Note: Result of processing the message (both SkypeControlApiMessage and
copydata) must be different from zero, otherwise Skype will consider the
connection broken!
API client cannot spend more than 1 second processing the API messages, if a
client spends more than 1 second for processing the connection will be
disconnected. Use the PING command to test connection status. In order to
easen debugging while development one can enter the key APITimeoutDisabled
(DWORD value, 0 = timeout enabled 1 = timeout disabled) into
HKCU\Software\Skype\Phone\UI - this makes Skype not force the 1 second
timeout.

8.2API Transport on Windows messages: Frequently asked
questions

How long can Skype hold my SendMessage() call?
Skype does not hold the SendMessage() call at all (under normal circumstances.
How long should an application wait before resending a command?
Most commands should return within milliseconds, searched can take longer.
Use PING every few seconds to make sure the communication channel is still
alive.
Can I have multiple threads doing SendMessage()?
You can, but there is no real difference as windows itself forces these to go into
one thread.

8.3API Transport on Windows messages: deprecated
To initiate communication, the Client should broadcast window message
('SkypeControlAPI') to all windows in the system, specifying its own window
handle in wParam parameter. In response to that Skype responds to the same
message to the handle specified, and indicates its communication window
handle in wParam. Now both parties know the window handle to send messages.

© Skype Technologies S.A. 36/37

Client may continue polling Skype with 'SkypeControlAPI' message to check if it
is still available.

© Skype Technologies S.A. 37/37

