The theory behind SIPSA anonymization protocol

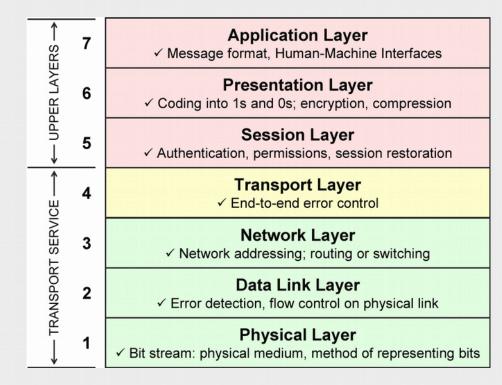
Kirils Solovjovs 150CT2016 Joint Estonian-Latvian Theory Days

Presentation structure

- Author and topic relevance
- Network and routing basics
- SIPSA overview
- Results
- Open problems

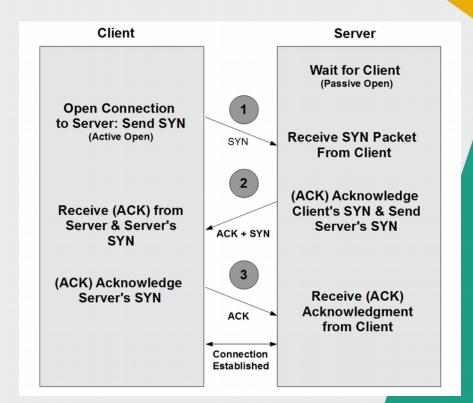
Author

- Kirils Solovjovs
 - IT security expert; researcher at 1st Ltd, Latvia
 - Network flow analysis, reverse engineering, social engineering, penetration testing, security incident investigation, and the legal dimension of cyber security and cyber defence

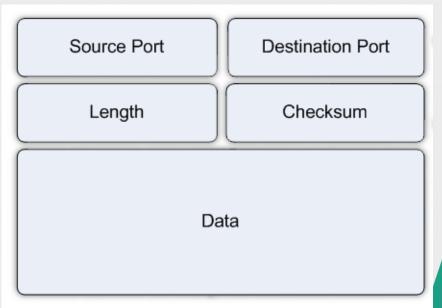

Topic relevance

- Anonymity on the internet has been a topic of wild debates and opposing opinions since the creation of the internet.
- So far there have been multiple attempts¹ to achieve <u>partial anonymity</u>, most of them done by routing the data <u>through third-party machines</u>, thus making it impossible to achieve true anonymity in an <u>untrusted</u> <u>environment</u> that is the internet.
- ¹ Tor, I2P, etc.

Topic relevance


 Source IP spoofing for anonymization over UDP (SIPSA) is a proposal for a protocol that in many network environments would allow two hosts on the network to <u>hide both their source and destination</u> <u>addresses in IP packets on the network level</u>, without relying on any third party, while still being able to send and receive information.

Network basics ISO/ISO model

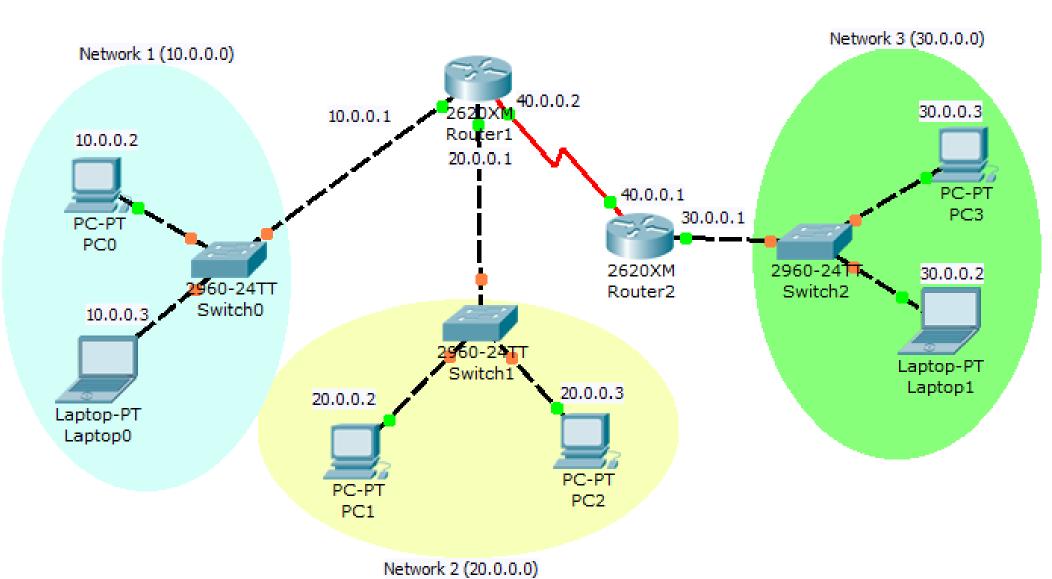

Network basics Transfer Control Protocol

- Stateful, connection-oriented
- "Reliable" transport
- Notable features include:
 - 3-way handshake
 - Error detection
 - Ordered transfer
 - Flow control

Network basics User Datagram Protocol

- Stateless, transaction-oriented
- "Best effort" transport
- Notable features include:
 - Minimalist design
 - No control
 - No retransmissions

SIPSA


Source IP spoofing for anonymization over UDP

Problem statement

Anonymity on the internet is hard

ASHER FREEMAN

Solution proposal

- Instead of sending a single UDP datagram, many are sent
 - Different pairs of (randomised) source and destination IPs
- Protocol goes on top of Layer 4, but below Layer 3 [!]
- Current version (04) chooses IPs in pairs within a class C network

Randomisation algorithm (v04)

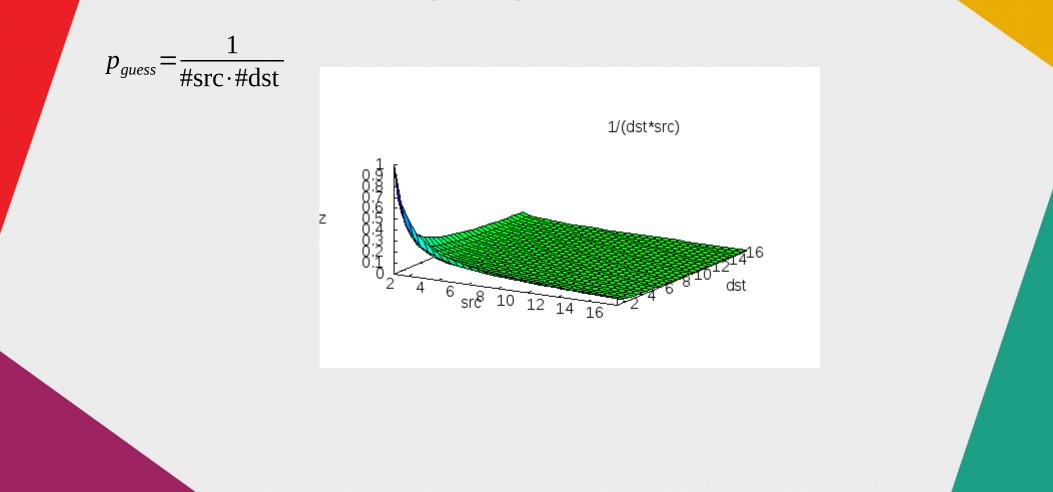
genPair(addr):

addr1.addr2.addr3.addr4←addr genPair←[] genPair[]←addr genPair[]←addr1.addr2.addr3.*{1-254}*

addressList←[] addressList[]←genPair(real) for i←1..n:

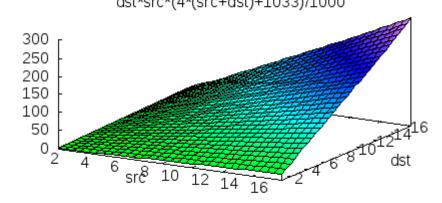
addressList[]←genPair({1-239}.{0-255}.{0-255}.{1-254})

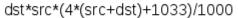
SIPSA datagram format

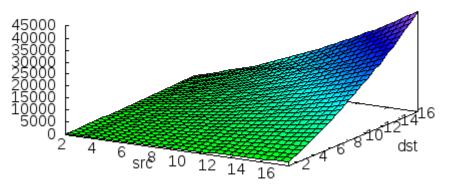

					ENCRYPTED with AES256, CBC mode, 16B block, iv=IV, total size = (Metalen-1)*16B									
Header	Reserved	Proto ver	Metalen	IV	Real src IP	Real dst IP	Src IP list	End marker	Dst IP list	End marker	Padding	Payload		
5B	1B	1B	1B	16B	4B	4B	4B x n	1B	4B x n	1B	0B – 15B	0B +		
"SIPSA"	"\00"	"\04"			may be zeros	may be zeros	n≥0	"\xFF"	n≥0	"\xFF"	"\x00"			

0000	**:	**	Laye	er 2	2 La	ayeı	r 2	Lay	yer	2 1	aye	er 2	2 **	***	*	***	
0010	-	•		_aye			-		-								
0020	**:	**	***	K La	ayei	r 4	Lay	yer	4 *	***	53	49	50	53	41	00	SIPSA.
0030	04	06	80	a4	22	19	de	7a	11	f7	46	a3	7b	a1	da	c9	"zF.{
0040	57	40	e3	61	92	d8	cd	27	9d	3f	75	64	3a	e4	f8	30	W@.a'.?ud:0
0050	c3	e8	9e	Θd	7d	6C	d6	31	1a	b2	bb	47	cf	ed	37	dd	}l.167.
0060	d1	76	43	37	6a	7c	a8	46	c5	91	a5	51	ee	25	92	8b	.vC7j .FQ.%
0070	12	a3	e8	a2	8f	1b	87	8f	12	3e	16	5e	78	a9	bc	80	>.^x
0080	c7	09	92	45	f7	14	cd	71	60	Зd	59	08	b5	b1	7e	сб	Eq`=Y~.
0090	e0	24	45	00	00	Зd	00	01	00	00	40	06	60	ab	08	08	. <mark>\$</mark> E=@.`
00a0	08	08	Øа	00	00	00	04	d2	07	d٥	00	00	00	00	00	00	
00b0	00	00	50	02	20	00	f1	21	00	00	54	75	6e	6e	65	бc	P!Tunnel
00c0	65	64	20	4c	61	79	65	72	20	35	20	64	61	74	61		ed Layer 5 data

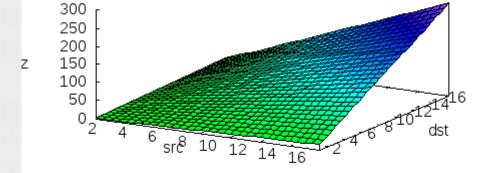
Results

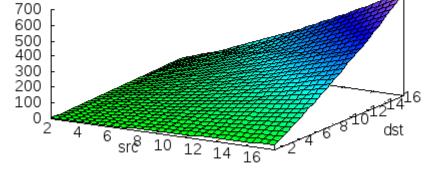

11-	Time	Courses	Destination	Destand	Longth	Tefe
No.	Time	Source	Destination	Protocol	Length	1010
16	0.525493000	73.110.16.23	194.232.119.61	UDP	207	Source port: 51654 Destination port: 51654
17	0.561435000	59.46.124.156	85.254.196.147	UDP	207	Source port: 51654 Destination port: 51654
18	0.606041000	59.46.124.156	53.60.44.232	UDP	207	Source port: 51654 Destination port: 51654
19	0.657318000	59.46.124.156	53.60.44.38	UDP	207	Source port: 51654 Destination port: 51654
20	0.701079000	59.46.124.156	73.22.109.27	UDP	207	Source port: 51654 Destination port: 51654
21	0.725030000	59.46.124.156	194.232.119.26	UDP	207	Source port: 51654 Destination port: 51654
22	0.757072000	59.46.124.156	73.22.109.28	UDP	207	Source port: 51654 Destination port: 51654
23	0.789475000	59.46.124.156	85.254.196.140	UDP	207	Source port: 51654 Destination port: 51654
24	0.833965000	59.46.124.156	194.232.119.61	UDP	207	Source port: 51654 Destination port: 51654
25	0.873479000	5.179.8.176	85.254.196.147	UDP	207	Source port: 51654 Destination port: 51654
26	0.913170000	5.179.8.176	53.60.44.232	UDP	207	Source port: 51654 Destination port: 51654
27	0.949429000	5.179.8.176	53.60.44.38	UDP	207	Source port: 51654 Destination port: 51654
28	0.981160000	5.179.8.176	73.22.109.27	UDP	207	Source port: 51654 Destination port: 51654
29	1.009337000	5.179.8.176	194.232.119.26	UDP	207	Source port: 51654 Destination port: 51654
30	1.041917000	5.179.8.176	73.22.109.28	UDP	207	Source port: 51654 Destination port: 51654
31	1.073366000	5.179.8.176	85.254.196.140	UDP	207	Source port: 51654 Destination port: 51654
32	1.097322000	5.179.8.176	194.232.119.61	UDP	207	Source port: 51654 Destination port: 51654
33	1.141451000	59.46.124.235	85.254.196.147	UDP	207	Source port: 51654 Destination port: 51654
34	1.181288000	59.46.124.235	53.60.44.232	UDP	207	Source port: 51654 Destination port: 51654


Anonymity statistics



Network load statistics


$$load = \frac{payload + 33 + 4 \cdot (\#src + \#dst)}{payload} \cdot \#src \cdot \#dst$$



dst*src*(4*(src+dst)+60033)/60000

dst*src*(4*(src+dst)+133)/100

Ζ

Weaknesses

- SIPSA gives only statistical improvement not 100% anonymity, so statistical attacks are likely possible
- Success largely depends on the ISPs involved
- Network load increase

Strengths and opportunities

- Ingress filtering has been sparsely implemented
- SIPSA may provide an additional layer of anonymity as part of a larger suite
- SIPSA provides deniability by virtue of UDP (and having fixed port numbering)
- Internet speeds are increasing fast

Alternative configurations

- Consider not including real source IP in the metadata
 - Even the server has no way of knowing or logging client IPs
- Consider not sending packet from the real source at all
 - It's of course impossible to do both

Open problems

- Key management
- Possible weaknesses due to statistical and other attacks
- Stateful SIPSA
- NAT support

Thank you! Presentation features fair-use of images found on the web