
Skype Desktop API Reference Manual

Purpose of this guide

This document describes the Skype application programming interface (API) for Windows, the Skype APIs for Linux and

Mac, and provides a reference guide for the Skype developer community.

Who reads this guide?

Skype’s developer community who work with us to enrich the Skype experience and extend the reach of free telephone

calls on the internet.

What is in this guide?

This document contains the following information:

 Overview of the Skype API

 Using the Skype API on Windows

 Using the Skype API on Linux

 Using the Skype API on Mac

 Skype protocol

 Skype reference

o Terminology

o Commands

o Objects

o Object properties

o General parameters

o Notifications

o Error codes

 Skype URI

 Skype release notes

More information

 Share ideas and information on the Skype Desktop API forum on the Skype websites.

Legal information

This document is the property of Skype Technologies S.A. and its affiliated companies (Skype) and is protected by

copyright and other intellectual property rights laws in Luxembourg and abroad. Skype makes no representation or

warranty as to the accuracy, completeness, condition, suitability, or performance of the document or related documents or

their content, and shall have no liability whatsoever to any party resulting from the use of any of such documents. By

using this document and any related documents, the recipient acknowledges Skype’s intellectual property rights thereto

and agrees to the terms above, and shall be liable to Skype for any breach thereof. For usage restrictions please read

the user license agreement (EULA).

Text notation

This document uses monospace font to represent code, file names, commands, objects and parameters. The following

text conventions apply for syntax:

 CALL – uppercase text indicates a keyword, such as command, notification, and object.

 property – lowercase text indicates a category of a keyword

 <username> – angle brackets indicate an identifier, such as username or call id

 [<target>] – square brackets identify optional items

 * – asterisk indicates repetitive items

 | – vertical bar means “or”

 -> – command issued by client (used in examples)

 <- – response or notification from Skype (used in examples)

 // – comment line (used in examples)

Overview of the Skype API
The Skype API provides a mechanism for 3rd party scripts, applications and devices to control Skype UI functions and

implement additional or improved features to complement the Skype.

The API has two layers:

 Communication Layer – is a set of methods for external application to establish connection to Skype client and communicate with it.

 Command Protocol Layer – is a text-based “language” that external applications can use to speak to the Skype client, once

communication channel is established by Communication Layer.

Additionally, there are several Skype API wrapper libraries that encapsulate the functionality of Skype API. Such

wrappers can act as optional third layers.

Communication Layer

Communication Layer provides a mechanism for external application to communicate with Skype. This layer is platform-

dpendant – a transport mechanism to exchange data with Skype is different on Windows, Linux and Mac operating

systems.

For more information on how to implement communication layers for different operating systems, see following sections

of this document:

 Using the Skype API on Windows

 Using the Skype API on Linux

 Using the Skype API on Mac

Once your application has attached itself to Skype via Communication Layer, it can forget all about it and proceed with

talking to Skype, using Protocol layer commands.

Protocol Layer

The Protocol Layer is a language of commands that Skype knows how to respond to. The syntax of that language is

described in Skype API reference portion of this documument.

Commands sent to Skype must be in UTF-8 format.

To get a better feel how the command protocol works, you should start by downloading the SkypeAPI Tracer program.

Once you get that program running (and have authorised its connection to theAPI in Skype UI) you can play around with

commands you can find in the Commands section.

For example, you can query various properties of a contact record (User object) like this:

-> get user echo123 birthday

<- USER echo123 BIRTHDAY 0

-> get user echo123 is_video_capable

<- USER echo123 IS_VIDEO_CAPABLE FALSE

A test call to Skype’s call testing service using API would look approximately like that:

-> call echo123

<- CALL 14662 STATUS UNPLACED

<- CALL 14662 STATUS UNPLACED

<- CALL 14662 STATUS ROUTING

<- USER echo123 COUNTRY United Kingdom

<- USER echo123 COUNTRY United Kingdom

<- USER echo123 COUNTRY

<- CALL 14662 STATUS RINGING

<- USER echo123 COUNTRY United Kingdom

<- CALL 14662 VAA_INPUT_STATUS FALSE

<- CALL 14662 STATUS INPROGRESS

<- CALL 14662 DURATION 1

<- CALL 14662 DURATION 2

<- CALL 14662 DURATION 3

<- CALL 14662 STATUS FINISHED

Wrappers

While text based command protocol is more universal, using pre-built libraries is easier to start with. We have had

three API wrapper libraries: Skype4COM, Skype4Py and Skype4Java. Currently, only Skype4COM wrapper is still

supported.

Skype API on Windows
When developing applications to work with Skype, follow these general guidelines:

 Give intuitive names to executable files (.exe files) because this name is displayed to the user for confirmation. If the name is

unclear, the user might not allow the application to access Skype.

 Sign applications with VeriSign’s CodeSigning certificate.

 The application must support the NAME command and publish its name.

Skype for Windows sends and receives API commands using WM_COPYDATA messages. Use

theRegisterWindowMessage method to register the following messages:

 SkypeControlAPIDiscover

 SkypeControlAPIAttach

To initiate communication, a client application broadcasts the SkypeControlAPIDiscover message, including its window

handle as a wParam parameter. Skype responds with a SkypeControlAPIAttachmessage to the specified window and

indicates the connection status with one of the following values:

 SKYPECONTROLAPI_ATTACH_SUCCESS = 0 – The client is attached and the API window handle is provided

in wParam parameter.

 SKYPECONTROLAPI_ATTACH_PENDING_AUTHORIZATION = 1 – Skype acknowledges the connection request and is waiting

for user confirmation. The client is not yet attached and must wait for theSKYPECONTROLAPI_ATTACH_SUCCESS message.

 SKYPECONTROLAPI_ATTACH_REFUSED = 2 – The user has explicitly denied access to client.

 SKYPECONTROLAPI_ATTACH_NOT_AVAILABLE = 3 – The API is not available at the moment, for example because no user is

currently logged in. The client must wait for aSKYPECONTROLAPI_ATTACH_API_AVAILABLE broadcast before attempting to

connect again.

When the API becomes available, Skype broadcasts the SKYPECONTROLAPI_ATTACH_API_AVAILABLE = 0x8001 message

to all application windows in the system. The data exchange uses commands (or responses), provided as null-terminated UTF-8

strings. The terminating 0 must be transferred as well. You cannot combine several messages in one packet. There is no limit to the

length of the transferred string.

Note: The result of processing the message must be different from zero (0), otherwise Skype considers that the connection

broken.

If the API client spends more than 1 second processing a message, the connection is disconnected. Use

the PING command to test the connection status. To ease debugging during development, in regedit enter the

key APITimeoutDisabled (DWORD value, 0 = timeout enabled 1 = timeout disabled) into

the HKCU\Software\Skype\Phone\UI file in the registry to override the 1 second timeout.

To check if Skype is installed, in regedit check if the following key exists:HKCU\Software\Skype\Phone,

SkypePath . This key points to the location of theskype.exe file . If this key does not exist, check if

the HKLM\Software\Skype\Phone, SkypePath key exists. If the HKCU key does not exist but the HKLM key is

present, Skype has been installed from an administrator account but not been used from the current account.

Skype API on Linux
The Skype API for Linux, version 1.4 uses the Skype protocol 7, with few limitations in comparison to protocol 7

implementation in our Windows version. The list of unavailable commands can be found at the bottom of this page.

Supported distributions

Skype for Linux runs on the following Linux distributions:

 Feisty Fawn (7.04)

 Debian Etch

 Mepis

 Xandros

 Fedora 7 / Fedora Core 6

 OpenSUSE 10+

 Mandriva

 Dynamic / Static / Static OSS

The client may also work with other distributions but has not been tested.

Transport

Use the Skype API for Linux, version 1.3, with either:

 D-BUS messaging

 X11 messaging

Note: X11 messaging is still under development. The final release of Skype for Linux API, version 1.3, will include

examples of working with X11 and a description of the Skype action handler for X11.

X11 messaging

The X11 messaging framework is included in all Linux distributions.

D-BUS messaging
Download the D-BUS libraries, version 0.23

D-BUS behavior in this release is changed from earlier releases, as follows:

 D-BUS is disabled by default to avoid startup delays for developers who do not want to use it.

 To use D-BUS in a manner that is consistent with earlier versions of the Skype API for Linux, enter the following switches in the

command line when you start the Skype client:
--enable-dbus --use-system-dbus

The second switch is necessary because Skype now uses the session-dbus by default to enable multiple clients to run on

one machine simultaneously.

Important: The Skype for Linux API, version 1.3, beta uses D-BUS version .23. The next release will move to support for D-

BUS version .61+.

If you use RPM Package Manager to install skype, the D-BUS files are automatically configured. If you do not

use RPM for the installation, you must create a configuration file as follows:
1. Create a text file named skype.conf

2. Save this file to /etc/dbus-1/system.d/skype.conf

3. Add the following information to the file:

<!DOCTYPE busconfig PUBLIC "-//freedesktop//

DTD D-BUS Bus Configuration 1.0//EN"

"http://www.freedesktop.org/standards/dbus/1.0/busconfig.dtd">

<busconfig>

<policy context="default">

<allow own="com.Skype.API"/>

<allow send_destination="com.Skype.API"/>

<allow receive_sender="com.Skype.API"/>

<allow send_path="/com/Skype"/>

</policy>

</busconfig>

Using the Skype API for Linux
To access the Skype API from a client application:

 The application passes its name to Skype:
-> NAME <application_name>

 Skype pops up the following response to the user:<- wants to talk to Skype. OK?

Important: On Linux, if you use spaces in the application_name, the name is truncated to the space. For example, if the application

name is Skype for Java, the message displayed is “Skype wants to talk . . .”. Also, on Linux it is essential to pass the application

name before exchanging protocols, otherwise the connection will not work.

 If the user selects OK, protocol messages are exchanged:

<- OK

-> PROTOCOL 5

<- PROTOCOL 5

The Skype protocol manages the subsequent session.

Note: The session is associated with the window ID of the Skype API client. If the window is closed for any reason, a new session must

be established.

D-BUS usage
D-BUS uses the following:

 Service is com.Skype.API

 Communication paths:

o The client-to-Skype path is /com/Skype.

o The Skype-to-client path is /com/Skype/Client.

 Methods are:

o Use the Invoke method with one string parameter for client-to-Skype commands.

o Use the Notify method for Skype-to-client commands and responses.

D-BUS is disabled by default.

Protocol 7 commands currently missing from Linux version

 GET / SET AVATAR

 GET / SET PCSPEAKER

 GET / SET RINGTONE

 GET / SET UI_LANGUAGE

 GET / SET VIDEO_IN

 GET / SET WALLPAPER

 GET / SET SILENT_MODE

 GET PREDICTIVE_DIALER_COUNTRY

 GET SKYPEVERSION

 GET USER

 SET MENU_ITEM

 RINGER

Also most of the OPEN commands for various Skype UI windows have not been implemented yet.

Skype API on Mac
The Skype API is available in Skype for Mac OS X starting from version 1.3 and has interfaces for Cocoa, Carbon, and

AppleScript. The Cocoa and Carbon interfaces are implemented inSkype.framework. Skype recommends that you include

the Skype framework in your application as an embedded framework. To do so, copy it into the application bundle and

link it to the application.

Client applications send string commands to control Skype. The format of these strings commands is described in

the Skype API reference. If you are using a Cocoa or Carbon interface, Skype will send information back to your

application by calling asynchronous delegate functions/methods.

Below, you’ll find the instructions specific to Cocoa, Carbon, and AppleScript.

Cocoa

SkypeAPI class

Class methods

+ (BOOL)isSkypeRunning;

This method returns YES, when Skype is running and NO otherwise.

+ (void)setSkypeDelegate:(NSObject<SkypeAPIDelegate>*)aDelegate;

You must design an object to be Skype delegate (see delegate methods below). Use this method to set your object as

Skype delegate.

+ (NSObject<SkypeAPIDelegate>*)skypeDelegate;

Returns the object which is currently set as Skype delegate.

+ (void)removeSkypeDelegate;

Removes current Skype delegate.

+ (void)connect;

Call this method after you have set Skype delegate. It will try to connect your application to Skype. Delegate

method skypeAttachResponse will let you know, whether your application was successfully connected or not.

+ (void)disconnect;

Disconnects your application from Skype.

In 2.5 and later:

+ (NSString*)sendSkypeCommand:(NSString*)aCommandString;

In 1.5:

+ (void)sendSkypeCommand:(NSString*)aCommandString;

Use this method to control Skype or request information. aCommandString is a Skype API string as described in

Skype API protocol documentation. Note, that if you are using Skype.framework 2.5 or later then you have to change your

code a little bit compared to 1.5, because in 2.5 sendSkypeCommand returns strings (in 1.5 all information was returned in

asynchronous callbacks).
Delegate methods

Required method
// delegate protocol

@protocol SkypeAPIDelegate

- (NSString*)clientApplicationName;

@end

This method should return the name of your application. This name will be shown to the user, when your application uses

Skype. The name should not include any version information.

Optional methods
// delegate informal protocol

@interface NSObject (SkypeAPIDelegateInformalProtocol)

- (void)skypeNotificationReceived:(NSString*)aNotificationString;

This is the main delegate method Skype uses to send information to your application.aNotificationString is a

Skype API string as described in Skype API protocol documentation.

- (void)skypeAttachResponse:(unsigned)aAttachResponseCode;

This method is called after Skype API client application has called connect.aAttachResponseCode is 0 on failure and

1 on success.

- (void)skypeBecameAvailable:(NSNotification*)aNotification;

This method is called after Skype has been launched.

- (void)skypeBecameUnavailable:(NSNotification*)aNotification;

This method is called after Skype has quit.

@end

Guidelines

Design an object in your application to be a Skype delegate. This object must implement the required delegate

method clientApplicationName. In order to receive information from Skype, it is recommended that your delegate

object also implements the optional delegate methods. The first method your application should call

is setSkypeDelegate. In most implementations, that will probably be:

[SkypeAPI setSkypeDelegate:self];

Next, you should call connect. After you have received positive response withskypeAttachResponse, you can start

sending commands to Skype by usingsendSkypeCommand. For example:

[SkypeAPI sendSkypeCommand:@"CALL echo123"];

When your application quits or wants to disconnect from Skype, you should call disconnect.

Carbon

In order to use Skype API, you must create a single instance of struct SkypeDelegate. If you set callback functions for

the members of this struct, then Skype will call these functions to send information to your application. The only required

member of this struct is a stringclientApplicationName.

Here is the definition of SkypeDelegate:

struct SkypeDelegate

{

// Required member

CFStringRef clientApplicationName;

// Optional members, can be NULL

void (*SkypeNotificationReceived)(CFStringRef aNotificationString);

void (*SkypeAttachResponse)(unsigned int aAttachResponseCode);

void (*SkypeBecameAvailable)(CFPropertyListRef aNotification);

void (*SkypeBecameUnavailable)(CFPropertyListRef aNotification);

};

Description

CFStringRef clientApplicationName;

This string should be the name of your application. It will be shown to the user, when your application uses Skype. The

name should not include any version information.

void (*SkypeNotificationReceived)(CFStringRef aNotificationString);

This is the main delegate function Skype uses to send information to your application.aNotificationString is a

Skype API string as described in Skype API protocol documentation.

void (*SkypeAttachResponse)(unsigned int aAttachResponseCode);

This function is called after Skype API client application has called ConnectToSkype.aAttachResponseCode is 0

on failure and 1 on success.

void (*SkypeBecameAvailable)(CFPropertyListRef aNotification);

This function is called after Skype has been launched.

void (*SkypeBecameUnavailable)(CFPropertyListRef aNotification);

This function is called after Skype has quit.

You should define the functions like this:

void SkypeNotificationReceived(CFStringRef aNotificationString){}

void SkypeAttachResponse(unsigned int aAttachResponseCode){}

void SkypeBecameAvailable(CFPropertyListRef aNotification){}

void SkypeBecameUnavailable(CFPropertyListRef aNotification){}

and you can set them as members of your SkypeDelegate struct like so:

SkypeDelegate mySkypeDelegate;

mySkypeDelegate.SkypeNotificationReceived = SkypeNotificationReceived;

mySkypeDelegate.SkypeAttachResponse = SkypeAttachResponse;

mySkypeDelegate.SkypeBecameAvailable = SkypeBecameAvailable;

mySkypeDelegate.SkypeBecameUnavailable = SkypeBecameUnavailable;

mySkypeDelegate.clientApplicationName = CFSTR("My Carbon App");

Skype API methods
Boolean IsSkypeRunning(void);

This function returns TRUE, when Skype is running and FALSE otherwise.

void SetSkypeDelegate(struct SkypeDelegate* aDelegate);

You must design a struct to be Skype delegate (see SkypeDelegate description above). Use this function to set your

struct as Skype delegate.

struct SkypeDelegate* GetSkypeDelegate(void);

Returns the struct which is currently set as Skype delegate.

void RemoveSkypeDelegate(void);

Removes current Skype delegate.

void ConnectToSkype(void);

Call this function after you have set Skype delegate. It will try to connect your application to Skype. Delegate callback

function skypeAttachResponse will let you know, whether your application was successfully connected or not.

void DisconnectFromSkype(void);

Disconnects your application from Skype.

CFStringRef SendSkypeCommand(CFStringRef aCommandString);

Use this function to control Skype or request information. aCommandString is a SkypeAPI/span> string as described in

Skype API protocol documentation.

In Skype.framework 2.6.0.142 and later: CFStringRef !SendSkypeCommand(CFStringRef aCommandString);

Older versions: void !SendSkypeCommand(CFStringRef aCommandString);

Note, that if you are using Skype.framework 2.6.0.142 or later then you have to change your code a little bit compared to

older versions, because in 2.6.0.142 !SendSkypeCommand returns strings (previously all information was returned in

asynchronous callbacks). Skype versions 2.5 and higher know how to return info synchronously. So, if you want to

support Skype version 1.5, then you still have to listen to asynchronous callbacks.

Guidelines

The first method your application should call is SetSkypeDelegate, where aDelegate is

yourSkypeDelegate struct. In most implementations, that will probably be:

SetSkypeDelegate(&myCarbonDelegate);

Next, you should call ConnectToSkype. After you have received positive response withSkypeAttachResponse,

you can start sending commands to Skype by usingSendSkypeCommand. For example:

SendSkypeCommand(CFSTR("CALL echo123"));

When your application quits or wants to disconnect from Skype, you should callDisconnectFromSkype.

AppleScript

There is just one command for Skype API, but it is a very powerful command, because you can send any the command

strings as specified in Skype API protocol documentation to control Skype or request information.

Examples

tell application "Skype"

*send command "MESSAGE echo123 check" script name "My Script"

end tell

tell application "Skype"

*send command "CALL echo123" script name "My Other Script"

end tell

Skype protocol

The Skype protocol is currently in its seventh version. Starting with protocol 1 (the first Skype protocol) a new version is

created only when new commands become incompatible with existing commands. The protocol number does not increase

when new commands are introduced but existing commands remain unchanged.

Protocol 8

Protocol 8 is the current version of the Skype protocol.

 New CALL STATUS enumerator – WAITING_REDIAL_COMMAND.

 New CALL STATUS enumerator – REDIAL_PENDING.

 New SMS FAILUREREASON enumerator – NO_SENDERID_CAPABILITY.

 Sending chat messages and CHAT CREATE commands may now fail with a new error code: 615, “CHAT: chat with given contact is

disabled”.

Protocol 7

 Call transfer API, We have two new CALL statuses: TRANSFERRING|TRANSFERRED

 Modified CHATMESSAGE property TYPE enumerations:

TYPE = POSTEDCONTACTS|GAP_IN_CHAT|SETROLE|KICKED|SETOPTIONS|

KICKBANNED|JOINEDASAPPLICANT|SETPICTURE|SETGUIDELINES

Protocol 6

 VOICEMAIL command enters deprecation process and is replaced by CALLVOICEMAIL command.

Protocol 5

Protocol 5 is the current version of the Skype protocol and is used by the following versions of Skype:

 2.0 – Windows

 1.4.0.84 – Windows

 1.3.0.33 – Windows and Mac

This protocol introduced multiperson chat commands, one-to-one video calls, call forwarding, and contact grouping.

Protocol 4

Protocol 4 is used by the following versions of Skype:

 1.2.0.11 – Windows

 1.1.0.3 – Windows and Linux

This protocol introduced ISO code prefixes for language and country.

Protocol 3

Protocol 3 is used by the following version of Skype:

 1.1.0.61 – Windows

This protocol introduced a compatibility layer for previous versions of instant messaging.

Protocol 2

Protocol 2 is used by the following version of Skype:

 1.0.0.94

This protocol implemented the following changes:

 Introduced the SKYPEME online status

 For calls on hold, notifies clients with either LOCALHOLD or REMOTEHOLD . Protocol 1 simply returnedONHOLD .

 Introduces the call status, CANCELLED .

Protocol 1 and 2 compatibility

If the requested protocol is smaller than 3, all incoming commands are converted as follows:

 SEARCH MESSAGES → SEARCH CHATMESSAGES

 SEARCH MISSEDMESSAGES → SEARCH MISSEDCHATMESSAGES

 GET MESSAGE → GET CHATMESSAGE

 SET MESSAGE → SET CHATMESSAGE

The GET MESSAGE properties are also converted:

 PARTNER_HANDLE → FROM_HANDLE

 PARTNER_DISPNAME → FROM_DISPNAME

All API notification (including GET/SET MESSAGE) replies are converted:

 CHATMESSAGE * FROM_HANDLE x → MESSAGE * PARTNER_HANDLE x

 CHATMESSAGE * FROM_DISPNAME x → MESSAGE * FROM_DISPNAME x

 CHATMESSAGE * property x → MESSAGE * property x

If the protocol is less than 3, SEARCH MESSAGES and SEARCH MISSEDMESSAGES commands return stringMESSAGES 1, 2, 3.

Skype API reference
The Skype API reference is a guide for developers working with the Skype Desktop API.

Terminology

The Skype API reference uses the following terms:

 The Skype access API is also known as the Skype control API.

 The client application issues a command to control Skype.

 In reply to some commands, Skype returns a synchronous response. Not all commands require a response. Responses are

documented under their relevant commands.

 Skype objects and their properties are described in Objects section of this reference.

 A notification is an asynchronous message Skype sends to a client when a change occurs, for example when a contact comes online

or a new chatmessage is received.

 Skype has general parameters to control the setup, current user and connection information.

 Connectable users are online Skype users who are in the client contact list and also non-contacts who are in active communication

with the client.

Commands

This section provides a reference to the commands used in Skype.

Command identifiers

A command identifier is useful to identify a response to a specific command. A command identifier is supported by most

commands and is included in the response.

Syntax

#<command_id> command

Response

#<command_id> response|error

Parameters

command_id – client assigned alphanumeric identifier

Errors

all possible errors for a given command

Version

Protocol 4

Notes

 A command identifier is not included in asynchronous notification events initiated by a command.

 Asynchronous commands usually return a synchronous response with the command id. When the command is processed an

asynchronous notification is also sent

 A response may come not directly after the command because there can other messages can be received between command and

response.

Examples

Simple response to command

-> #AB GET USERSTATUS

<- #AB USERSTATUS ONLINE

Invalid command with reported error

-> #123 GET XZY

<- #123 ERROR 7 GET: invalid WHAT

Command response and notification

-> #cmd11 SET USERSTATUS ONLINE

// this is the response for the command

<- #cmd11 USERSTATUS ONLINE

// this is notification when the command is actually processed

<- USERSTATUS ONLINE

Command response and notification are asynchronous

-> #50 CALL +18005551234

// note that events can arrive before response

<- CALL 651 STATUS ROUTING

<- #50 CALL 651 STATUS ROUTING

<- CALL 651 PSTN_STATUS 10503 Service Unavailable

// the following events do not have a command id

<- CALL 651 FAILUREREASON 1

<- CALL 651 STATUS FAILED

Notifications can appear between command-response

-> #50 PING

// note that other events can arrive before command response

<- USER echo123 LASTONLINETIMESTAMP 1105764678

<- USER echo123 FULLNAME Echo Test Service

<- USER test LASTONLINETIMESTAMP 1105487965

// Now comes Skype response to command

<- #50 PONG

Making and managing voice calls

This section describes the commands for making and managing voice calls.

Refer to Making and managing video calls for a description of video call commands.

Refer to Call failure reasons for a list of all reasons for call failure.
CALL

Syntax

CALL <target>[, <target>]*

Response

CALL <call_ID> <status>

Parameters

<target> – targets to be called. In case of multiple targets conference is created. Available target types:

 USERNAME – Skype username, e.g. “pamela”, “echo123”

 PSTN – PSTN phone number, e.g. “+18005551234”, “003725555555”

 SPEED DIAL CODE – 1 or 2 character speeddial code

Errors

 ERROR 34 invalid user handle

Target username/number missing or contains invalid characters

 ERROR 39 user blocked

Trying to call to a blocked user (unblock user in contactlist)

 ERROR 73 too many participants

Call is initiated to more than 9 people

 ERROR 92 call error

Call is initiated to a number that is neither PSTN number nor a speeddial number

Version

Protocol 1

Notes

The Skype call window is focused when a call is initiated through the API. It is possible to make speed dial calls via

the API.

Example
-> CALL echo123

<- CALL 1402 STATUS ROUTING

<- CALL 1402 SUBJECT

<- CALL 1402 STATUS ROUTING

<- CALL 1402 STATUS RINGING

<- CALL 1402 STATUS INPROGRESS

<- CALL 1402 DURATION 1

<- CALL 1402 STATUS FINISHED

GET CALL

Syntax

GET CALL <id> property

Response

CALL <id> property <value>

Parameters and response values

 <id> – call ID (numeric);

 property – property name. Refer to CALL object for the list of properties.

Errors

 ERROR 7 GET: invalid WHAT

Object name missing or misspelled.

 ERROR 11 Invalid call id

ID includes other than numeric characters.

 ERROR 12 Unknown call

Call with specified ID does not exist in current user’s call history.

 ERROR 13 Invalid prop

Property name missing or misspelled.

 ERROR 71 Invalid conference participant NO

Conference participant’s number is not a number or is too big

Version

Protocol 1

Example
-> GET CALL 1594 TYPE

<- CALL 1594 TYPE OUTGOING_P2P

SET CALL INPROGRESS

This enables you to resume a call, for example after placing it on hold.

Syntax:

-> SET CALL <id> STATUS INPROGRESS

<- CALL <id> STATUS INPROGRESS

Parameters:

<id> – call ID (numeric)

Errors

 ERROR 19 Invalid call id

ID includes other than numeric characters

 ERROR 20 Unknown call

Call with specified ID does not exist

 ERROR 23 Cannot resume this call at the moment

Given call is not ringing and therefore can not be answered.

SET CALL FINISHED

Terminates the call.

Syntax:

-> SET CALL <id> STATUS FINISHED

<- CALL <id> STATUS FINISHED

Parameters:

<id> – call ID (numeric)

Errors

 ERROR 19 Invalid call id

ID includes other than numeric characters

 ERROR 20 Unknown call

Call with specified ID does not exist in current user’s call history nor is active.

 ERROR 24 Cannot hangup inactive call

Given call is not in progress and therefore can not be hung up.

SET CALL ONHOLD

Places a call on hold. You can later resume the call by setting the state to INPROGRESS.

Syntax:

-> SET CALL <id> STATUS ONHOLD

<- CALL <id> STATUS ONHOLD

Parameters:

<id> – call ID (numeric), possible values:

Note that from Protocol 2 and up, SET CALL ONHOLD results in two possible status responses:

 LOCALHOLD – call was placed on hold by local user

 REMOTEHOLD – call was placed on hold by remote user

Errors

 ERROR 19 Invalid call id

ID includes other than numeric characters

 ERROR 20 Unknown call

The call ID does not exist in current user’s call history nor is it active.

 ERROR 22 Cannot hold this call at the moment

Given call is not in progress and therefore can not be placed on hold.

 ERROR 23 Cannot resume this call at the moment

Given call is not on hold and therefore can not be resumed.

SET CALL JOIN CONFERENCE

Syntax

SET CALL <joining_id> JOIN_CONFERENCE <master_id>

Response

CALL <id> CONF_ID <conference_id>

Parameters

 <joining_id> – call ID (numeric) to join into;

 <master_id> – master call ID, where is another call’s ID.

Errors

 ERROR 19 Invalid call id

ID includes other than numeric characters

 ERROR 20 Unknown call

Call with specified ID does not exist in current user’s call history nor is active.

 ERROR 72 Cannot create conference

Creating conference, for example " SET CALL 65 JOIN_CONFERENCE 66 " fails for some reason.

Note

 It is possible to initate a conference with the CALL target1, target2 command

Example
// make first call

-> CALL test

<- CALL 1540 STATUS ROUTING

<- CALL 1540 SUBJECT

<- CALL 1540 STATUS ROUTING

<- CALL 1540 STATUS RINGING

<- CALL 1540 STATUS INPROGRESS

// set first call on hold ...

-> SET CALL 1540 STATUS ONHOLD

<- CALL 1540 STATUS INPROGRESS

<- CALL 1540 STATUS ONHOLD

// .. and make another call

-> CALL echo123

<- CALL 1545 STATUS ROUTING

<- CALL 1545 SUBJECT

<- CALL 1545 STATUS ROUTING

<- CALL 1545 STATUS RINGING

<- CALL 1545 STATUS INPROGRESS

// join second call (1545) into conference with first call (1540)

-> SET CALL 1545 JOIN_CONFERENCE 1540

<- CALL 1545 CONF_ID 17930

<- CALL 1545 CONF_ID 17930

<- CALL 1540 CONF_ID 17930

// first call is automatically resumed and joined to conference

<- CALL 1540 STATUS INPROGRESS

// ...

<- CALL 1540 DURATION 53

<- CALL 1540 STATUS FINISHED

<- CALL 1545 DURATION 23

<- CALL 1545 STATUS FINISHED

SET CALL DTMF

Sends DTMF specified in parameter to the call target.

Syntax:

-> SET CALL <id> DTMF <value>

<- SET CALL <id> DTMF <value>

Parameters:

 <id> – call ID (numeric)

 <value> – permitted symbols are: {0..9,#,*}.

When sending DTMF codes manually, with the dialpad buttons on the Call Phones tab of the Skype UI,

these DTMF codes are displayed on the address bar, below dialpad. This is not the case while sending DTMF codes

with SET CALL DTMF command.

If you want your programmatically sent DTMF codes to be displayed on the address bar, you can

use BTN_RELEASED command instead of SET CALL DTMF. When used during an active call,BTN_RELEASED with

appropriate parameter {0..9,#,*} will cause equivalent DTMF code to be sent to the remote party of that call.

Note that this will only work if the Call Phones tab (dialpad) is active. On active Call tab, the DTMFcodes will still be sent

but the keys will not be displayed on the address bar. On Contacts tab, the keys will be added to the address bar but

no DTMF codes will be sent. Therefore, if you want to useBTN_RELEASED for sending DTMF codes, you will need to

make sure the Skype UI has Call Phones as active tab. This you can do with OPEN DIALPAD command.

Notes

 DTMF support and quality for PSTN calls depends on terminating partner.

 This command does not accept multiple symbols in its parameter.

Errors

 ERROR 19 Invalid call id

ID includes other than numeric characters

 ERROR 20 Unknown call

Call with specified ID does not exist in current user’s call history nor is it active.

 ERROR 21 Unknown/disallowed call prop

DTMF property value is incorrect or misspelled

SET CALL SEEN

Syntax

SET CALL <id> SEEN

Response

CALL <id> SEEN TRUE

Parameters

<id> – call ID (numeric)

Errors

 ERROR 19 Invalid call id

ID includes other than numeric characters

 ERROR 20 Unknown call

Call with specified ID does not exist in current user’s call history nor is active.

Example
-> SET CALL 15 SEEN

<- CALL 15 SEEN TRUE

ALTER CALL

The ALTER CALL command controls call status.

Syntax:
ALTER CALL xxx

{ ANSWER

| HOLD

| RESUME

| HANGUP

| END { HANGUP | REDIRECT_TO_VOICEMAIL | FORWARD_CALL } // for an incoming

ringing call

| DTMF <0|1|..|9|*|#>

| TRANSFER

| JOIN_CONFERENCE <callID> }

Refer to ALTER CALL TRANSFER command for more information on altering the TRANSFERproperty.

Command feedback for ALTER CALL always includes echoing back the original command, usually followed by status

change notifications, specific to particular commands.

Example:
-> ALTER CALL 1719 HANGUP

<- ALTER CALL 1719 HANGUP

<- CALL 1719 STATUS FINISHED

Version

Protocol 5
GET CALL CAN_TRANSFER

Returns TRUE or FALSE, depending on whether a call can be transferred.

Syntax:

-> GET CALL <id> CAN_TRANSFER <handle>

<- CALL <id> CAN_TRANSFER <handle> {TRUE|FALSE}

Example:
-> GET CALL 1034 CAN_TRANSFER +3721234567

<- CALL 1034 CAN_TRANSFER +3721234567 FALSE

Version

Protocol 7 (API version 3.0)
ALTER CALL TRANSFER

Used for transferring an incoming call. Note that call transfers only work with incoming calls to SkypeIn numbers if you

have Skype Pro subscription.

Syntax:

-> ALTER CALL <id> TRANSFER handle1[, handle2 ..]

<- ALTER CALL <id> TRANSFER

If multiple handles are passed in parameters, first one to answer the call will get the transfer.

To better describe the call transfer mechanism, let’s assume there are three participants in a call: A, B and C.

 A calls B

 B transfers the call to C

 A and C can now talk.

The ALTER CALL TRANSFER command is issued by B, to create a call between A and C. To check whether it is

possible to transfer the call from A, B can use GET CALL CAN_TRANSFER command. Note that it is caller B

(transferring party) who has to determine, whether a call is transferable.

Relevant CALL object STATUS property values:

 TRANSFERRING – seen by B, this status is set while the call between A and C is in progress)

 TRANSFERRED – seen by B, terminating status of the call. Set after either the transferred call has ended or B does END/HANGUP;

Relevant CALL object properties:

 TRANSFER_ACTIVE – seen by A, indicates whether the call has been transferred.

 TRANSFER_STATUS – seen by B – the call status while the call is being transferred, it is relayed from A side continuously until the

call has ended or when B decides to do CALL ALTER END. Ending call on B side will not terminate the call between A and C, just

the status updates.

 TRANSFERRED_BY – seen by C, contains identity of B.

 TRANSFERRED_TO – seen by both A and B; contains identity of C.

Example:
//---

// In this example, user Test is calling user Test3. Test3 then transfers the

call to Test2.

// Note that for better clarity, call heartbeat messages are removed.

// Following portion of log is from perspective of the first outgoing call

from user Test.

-> CALL Test3

<- CALL 626 STATUS UNPLACED

<- CALL 626 STATUS ROUTING

<- CALL 626 STATUS RINGING

<- CALL 626 TRANSFER_ACTIVE TRUE

<- CALL 626 STATUS ROUTING

<- CALL 626 TRANSFERRED_TO Test2

<- CALL 626 STATUS RINGING

<- CALL 626 VAA_INPUT_STATUS FALSE

<- CALL 626 STATUS INPROGRESS

<- CALL 626 VIDEO_STATUS VIDEO_NONE

<- CALL 626 STATUS FINISHED

//---

// This portion of the log is from perspective of Test3 (who will transfer it

to Test2)

<- CALL 288 CONF_ID 0

<- CALL 288 STATUS RINGING

<- CONTACTS FOCUSED

//---

// Checking here if it is possible to transfer this call to Test2

-> GET CALL 288 CAN_TRANSFER Test2

<- CALL 288 CAN_TRANSFER test2 TRUE

//---

// Transferring call to Test2

-> ALTER CALL 288 TRANSFER Test2

<- ALTER CALL 288 TRANSFER Test2

<- CALL 288 STATUS INPROGRESS

<- CALL 288 TRANSFERRED_TO Test2

<- CALL 288 TRANSFER_STATUS UNPLACED

<- CALL 288 TRANSFER_STATUS ROUTING

<- CALL 288 TRANSFER_STATUS RINGING

<- CALL 288 TRANSFER_STATUS INPROGRESS

<- CALL 288 STATUS FINISHED

<- CALL 288 VAA_INPUT_STATUS FALSE

//---

// This portion of the log is from perspective of Test2 (receiver of the

transferred call)

<- CALL 1218 CONF_ID 0

<- CALL 1218 STATUS RINGING

<- CONTACTS FOCUSED

-> ALTER CALL 1218 ANSWER

<- ALTER CALL 1218 ANSWER

<- CALL 1218 STATUS INPROGRESS

<- CALL 1218 VIDEO_STATUS VIDEO_NONE

<- CALL 1218 VAA_INPUT_STATUS FALSE

//---

// Checking up who it was that transferred this call..

-> GET CALL 1240 TRANSFERRED_BY

<- CALL 1240 TRANSFERRED_BY Test3

<- CALL 1218 STATUS FINISHED

Version

Protocol 7 (API version 3.0)
Call failure reasons

Code Description Possible reason

1

CALL 181

FAILUREREASON 1 Miscellaneous error

2

CALL 181

FAILUREREASON 2

User or phone number does not exist. Check that a prefix is entered for the

phone number, either in the form 003725555555 or +3725555555; the form

3725555555 is incorrect.

3

CALL 181

FAILUREREASON 3 User is offline

4

CALL 181

FAILUREREASON 4 No proxy found

5

CALL 181

FAILUREREASON 5 Session terminated.

6

CALL 181

FAILUREREASON 6 No common codec found.

7

CALL 181

FAILUREREASON 7 Sound I/O error.

8

CALL 181

FAILUREREASON 8 Problem with remote sound device.

9

CALL 181

FAILUREREASON 9 Call blocked by recipient.

10

CALL 181

FAILUREREASON 10 Recipient not a friend.

11

CALL 181

FAILUREREASON 11 Current user not authorized by recipient.

12

CALL 181

FAILUREREASON 12 Sound recording error.

13

CALL 181

FAILUREREASON 13 Failure to call a commercial contact.

14

CALL 181

FAILUREREASON 14

Conference call has been dropped by the host. Note that this does not

normally indicate abnormal call termination. Call being dropped for all the

participants when the conference host leavs the call is expected behaviour.

Sending and managing SMS messages

This section describes the commands for creating and managing SMS messages.

Refer to SMS object section for a list of SMS object properties.
CREATE SMS

This command creates an SMS object.

Syntax:

-> CREATE SMS <type> <target>

Where target is a valid PSTN number and type can be one of the following:

 OUTGOING – normal outbound SMS.

 CONFIRMATION_CODE_REQUEST – Refer to [#SMS_NUMBER_VALIDATION SMS reply-to validation] for more information.

 CONFIRMATION_CODE_SUBMIT – Refer to [#SMS_NUMBER_VALIDATION SMS reply-to validation] for more information.

Refer to

 Creating an SMS message section for more information (including format of feedback notifications).

 SMS object section for a list of SMS object properties.

Version

Added in API version 2.5
SET SMS BODY

This command sets or changes the text of an existing SMS object.

Syntax:

-> SET SMS <id> BODY "text"

Where is an SMS object ID returned from CREATE SMS command and text is the SMS message text.

Refer to

 Creating an SMS message section for more information.

 SMS object section for a list of SMS object properties.

Version

Added in API version 2.5
ALTER SMS SEND

This command sends a composed SMS message to the server.

Syntax:

-> ALTER SMS <id> SEND

Where is SMS object ID.

Refer to

 Creating an SMS message section for more information.

 SMS object section for a list of SMS object properties.

Version

Added in API version 2.5
SET SMS SEEN

This command sets an SMS object as SEEN.

Syntax:

-> SET SMS <id> SEEN

Where is an SMS object ID.

Refer to

 SMS object section for a list of SMS object properties.

Version

Added in API version 2.5
Creating an SMS message

To create, compose and send an SMS message, use CREATE SMS, SET SMS and ALTER SMScommands.

Refer to SMS object section for a list of SMS object properties.

Example:
// --

// Here we create a new SMS object instance

-> CREATE SMS OUTGOING +0123456789

<- SMS 821 STATUS COMPOSING

<- SMS 821 PRICE 0

<- SMS 821 TIMESTAMP 0

<- SMS 821 PRICE_PRECISION 3

<- SMS 821 PRICE_CURRENCY EUR

<- SMS 821 STATUS COMPOSING

<- SMS 821 TARGET_NUMBERS +0123456789

<- SMS 821 PRICE -1

<- SMS 821 TARGET_STATUSES +0123456789=TARGET_ANALYZING

<- SMS 821 TARGET_STATUSES +0123456789=TARGET_ACCEPTABLE

<- SMS 821 PRICE 78

// --

// This is how to set the message text property

// Note that you will get two identical lines in response

-> SET SMS 821 BODY "test 123 test 223 test 333"

<- SMS 821 BODY "test 123 test 223 test 333"

<- SMS 821 BODY "test 123 test 223 test 333"

// --

// Now lets try to send the message

-> ALTER SMS 821 SEND

<- ALTER SMS 821 SEND

<- SMS 821 STATUS SENDING_TO_SERVER

<- SMS 821 TIMESTAMP 1174058095

<- SMS 821 TARGET_STATUSES +0123456789=TARGET_ACCEPTABLE

<- SMS 821 TARGET_STATUSES +0123456789=TARGET_DELIVERY_FAILED

<- SMS 821 FAILUREREASON INSUFFICIENT_FUNDS

<- SMS 821 STATUS FAILED

<- SMS 821 IS_FAILED_UNSEEN TRUE

// --

// As sending the message failed (not enough Skype credit),

// lets delete the message

-> DELETE SMS 821

<- DELETE SMS 821

Version

Added in API version 2.5
SMS message text in chunks

The SMS object has special properties to break large messages into smaller chunks. Maximum size of a chunk is 160

characters. Note that some unusually clever-looking symbols (“ä”, “ö”, etc.) translate into more than one characters in

stored text.

To query how many chunks is contained in an SMS message:

-> GET SMS <id> CHUNKING

<- SMS <id> CHUNKING <no. of chunks> <no. of characters in the final chunk>

To access text within a chunk:

-> GET SMS <id> CHUNK <#>

<- SMS <id> CHUNK <#> <text>

Searching SMS messages

Following two commands are available to search for SMS objects:

 SEARCH SMSS

 SEARCH MISSEDSMSS

Version

Added in API version 2.5
Deleting SMS messages

All SMS messages that you have created in Skype remain stored in the system until they get deleted. To delete

an SMS message, use DELETE SMS COMMAND:

Syntax:

-> DELETE SMS <ID>

<- DELETE SMS <ID>

Example:
-> SEARCH SMSS

<- SMSS 233

-> DELETE SMS 233

<- DELETE SMS 233

The list of deletable SMS messages can be queried with SEARCH SMSS command. Refer to SMSobject section for a list

of SMS object properties.

Version

Added in API version 2.5
SET SMS REPLY_TO_NUMBER

This command sets the reply-to property of an SMS object.

Syntax:

-> SET SMS <id> REPLY_TO_NUMBER <pstn>

Version

Added in API version 2.5
SET SMS TARGET_NUMBERS

This command changes the destination(s) of an SMS message.

Syntax:

SET SMS <id> TARGET_NUMBERS <pstn1>[, <pstn2>]

Where is ID of a created SMS object and destination(s) are given as a comma-separated list of validPSTN numbers.

Example:
//---

// Note that at least one target number is mandatory for CREATE SMS

-> CREATE SMS OUTGOING +37259877305

<- SMS 1702 TYPE OUTGOING

<- SMS 1702 STATUS COMPOSING

<- SMS 1702 PRICE 0

<- SMS 1702 TIMESTAMP 0

<- SMS 1702 STATUS COMPOSING

<- SMS 1702 PRICE_PRECISION 3

<- SMS 1702 PRICE_CURRENCY EUR

<- SMS 1702 TARGET_NUMBERS +37259877305

<- SMS 1702 PRICE -1

<- SMS 1702 TARGET_STATUSES +37259877305=TARGET_ANALYZING

<- SMS 1702 TARGET_STATUSES +37259877305=TARGET_ACCEPTABLE

<- SMS 1702 PRICE 78

//---

// Now let's add two more target numbers (in addition to original)

-> SET SMS 1702 TARGET_NUMBERS +37259877305, +37259877306, +37259877307

<- SMS 1702 TARGET_NUMBERS +37259877305, +37259877306, +37259877307

<- SMS 1702 TARGET_NUMBERS +37259877305, +37259877306, +37259877307

<- SMS 1702 PRICE -1

<- SMS 1702 TARGET_STATUSES +37259877305=TARGET_ACCEPTABLE,

+37259877306=TARGET_ANALYZING, +37259877307=TARGET_ANALYZING

<- SMS 1702 TARGET_STATUSES +37259877305=TARGET_ACCEPTABLE,

+37259877306=TARGET_ACCEPTABLE, +37259877307=TARGET_ACCEPTABLE

<- SMS 1702 TARGET_STATUSES +37259877305=TARGET_ACCEPTABLE,

+37259877306=TARGET_ACCEPTABLE, +37259877307=TARGET_ACCEPTABLE

<- SMS 1702 PRICE 234

Version

Added in API version 2.5
Setting mobile phone number on reply-to field in outgoing SMS messages

An outgoing SMS message from Skype lists the reply-to number as the user’s Skype ID.

It is possible to change the reply-to number to a mobile phone number by registering the number in Skype client.

Skype validates this number, and it then becomes the reply-to number for outgoing SMSmessages.

To register a mobile phone number in Skype client:
1. Create and send an SMS message of type CONFIRMATION_CODE_REQUEST to your own mobile number.

2. Skype sends an SMS message to your mobile, with message body containing a confirmation code.

3. Create another SMS of type CONFIRMATION_CODE_SUBMIT to the same number and include the confirmation code in message

body.

4. Your mobile phone number is then validated as a reply-to number for outgoing SMS messages.

To create confirmation request and submit messages,

use CONFIRMATION_CODE_REQUEST andCONFIRMATION_CODE_SUBMIT respectively as 2nd parameter

in CREATE SMS command.

To retrieve the mobile number you have set as reply-to for outgoing SMS messages:

-> GET PROFILE SMS_VALIDATED_NUMBERS

<- PROFILE SMS_VALIDATED_NUMBERS <+ number >[, <+number>..]

Call cost information

Cost information is stored in RATE, RATE_CURRENCY and RATE_PRECISION properties of aCALL object.

Example of how to retrieve call cost data:
//--

// First let's find a suitable call ID

-> SEARCH CALLS

<- CALLS 100, 101, 102

//--

// Here we will retrieve cost data from call 100

-> GET CALL 100 RATE

<- CALL 100 RATE 1234

-> GET CALL 100 RATE_PRECISION

<- CALL 100 RATE_PRECISION 2

-> GET CALL 100 RATE_CURRENCY

<- CALL 100 RATE_CURRENCY EUR

//--

// To determine the actual cost of the call,

// you will also need to know the call duration

-> GET CALL 100 DURATION

<- CALL 100 DURATION 60

Note that call DURATION is expressed in seconds while call RATE is expressed as cost per minute.

Skype4Com example:

 CallCost.pas

Version

Protocol 6, Skype API version 2.5

Making and managing video calls

This section contains the commands for making and managing video calls.

Skype4Com sample:

 VideoSwitching.pas

GET VIDEO_IN

The GET VIDEO_IN command retrieves the name of the video device to use for a call. If no value is returned, Skype sets

the default value.

Syntax

-> GET VIDE0_IN

<- VIDEO_IN [<devicename>]

Note

If no devicename is returned, Skype sets a default value with the following command:

-> SET VIDEO_IN <devicename>
SET VIDEO_IN

This command enables you to change webcam settings.

Syntax:

-> SET VIDE0_IN [<device_name>]

<- VIDEO_IN [<device_name>]

If the parameter is empty, webcam is set to “Default video device”.

If device passed in parameter cannot be found, following error is reported:

 ERROR 50 cannot set device

GET CALL VIDEO_STATUS

To check if a Skype client is video-enabled:

Syntax

-> GET CALL 5921 VIDEO_STATUS

Response
Skype responds with the video status for the active call, for example:

<- CALL 5921 VIDEO_STATUS VIDEO_NONE

Parameters
VIDEO_NONE

VIDEO_SEND_ENABLED

VIDEO_RECV_ENABLED

VIDEO_BOTH_ENABLED

Version

Protocol 5
ALTER CALL VIDEO_SEND

Used to start or stop sending video during a call.

Syntax to start video:

-> ALTER CALL <id> START_VIDEO_SEND

<- ALTER CALL <id> START_VIDEO_SEND

<- CALL <id> VIDEO_SEND_STATUS STARTING

Syntax to stop video:

-> ALTER CALL <id> STOP_VIDEO_SEND

<- ALTER CALL <id> STOP_VIDEO_SEND

Parameters:
START_VIDEO_SEND

STOP_VIDEO_SEND

Version

Protocol 5
ALTER CALL VIDEO_RECEIVE

Used to start or stop receiving video during a call.

Syntax to start receiving video:

-> ALTER CALL <id> START_VIDEO_RECEIVE

<- ALTER CALL <id> START_VIDEO_RECEIVE

Syntax to stop receiving video:

-> ALTER CALL <id> STOP_VIDEO_RECEIVE

<- ALTER CALL <id> STOP_VIDEO_RECEIVE

<- CALL <id> VIDEO_RECEIVE_STATUS STOPPING

Parameters:
START_VIDEO_RECEIVE

STOP_VIDEO_RECEIVE

Version

Protocol 5
GET CALL VIDEO_SEND_STATUS

To check video send status:

Syntax

-> GET CALL 5921 VIDEO_SEND_STATUS

Response

Skype responds with the appropriate parameter.

Parameters

NOT_AVAILABLE // The client does not have video capability because video is disabled or a webcam is unplugged).

AVAILABLE // The client is video-capable but the video is not running (can occur during a manual send).

STARTING // The video is sending but is not yet running at full speed.

REJECTED // The receiver rejects the video feed (can occur during a manual receive).

RUNNING // The video is actively running.

STOPPING // The active video is in the process of stopping but has not halted yet.

PAUSED // The video call is placed on hold.

Version

Protocol 5
GET CALL VIDEO_RECEIVE_STATUS

To check video receive status:

Syntax

-> GET CALL 5921 VIDEO_RECEIVE_STATUS

Response

Skype responds with the appropriate parameter.

Parameters

NOT_AVAILABLE // The client does not have video capability because video is disabled or a webcam is unplugged).

AVAILABLE // The client is video-capable but the video is not running (can occur during a manual send).

STARTING // The video is sending but is not yet running at full speed.

REJECTED // The receiver rejects the video feed (can occur during a manual receive).

RUNNING // The video is actively running.

STOPPING // The active video is in the process of stopping but has not halted yet.

PAUSED // The video call is placed on hold.

Version

Protocol 5

IS_VIDEO_CAPABLE

To check if a user is video-capable:

Syntax

-> GET USER <username> IS_VIDEO_CAPABLE

Response

<- USER <username> IS_VIDEO_CAPABLE {True|False}

Version

Protocol 5
OPEN VIDEOTEST

To open the Video Test window to test if video is working:

Syntax

OPEN VIDEOTEST

Response

If successful command is echoed back

Version

Protocol 5
OPEN OPTIONS VIDEO

To open the Video Options window:

Syntax:

-> OPEN OPTIONS VIDEO

<- OPEN OPTIONS VIDEO

Version

Protocol 5

Leaving and manipulating voicemails

This section contains the commands to leave and manipulate voicemails.

Skype4Com samples:

 VoiceMail2WAV.pas – Delphi example on how to save voicemails into WAV files.

VOICEMAIL

The VOICEMAIL command starts to deprecate in protocol 6 and is replaced by theCALLVOICEMAIL command.
CALLVOICEMAIL

Refer to VOICEMAIL object.

To leave a voicemail:

Syntax

CALLVOICEMAIL <target>

When you start an outgoing voicemail, a call object and two voicemail objects are created. First one of the voicemail

objects is incoming greeting message. Second voicemail object is the outgoing message.

Example
//---

// Starting voicemail call to testuser, the system will report back call

// ID and status. The object IDs in this example are call (524), greeting

(525)

// and voicemail message (526)

-> CALLVOICEMAIL testuser

<- CALL 524 STATUS ROUTING

//---

// Then the system reports back the incoming greeting voicemail properties

<- VOICEMAIL 525 TYPE CUSTOM_GREETING

<- VOICEMAIL 525 PARTNER_HANDLE testuser

<- VOICEMAIL 525 PARTNER_DISPNAME Test User

<- VOICEMAIL 525 ALLOWED_DURATION 60

<- VOICEMAIL 525 SUBJECT

<- VOICEMAIL 525 TIMESTAMP 1174384114

<- VOICEMAIL 525 DURATION 0

<- VOICEMAIL 525 STATUS NOTDOWNLOADED

<- VOICEMAIL 525 STATUS DOWNLOADING

//---

// Then the system reports back the outgoing voicemail properties

<- VOICEMAIL 526 TYPE OUTGOING

<- VOICEMAIL 526 PARTNER_HANDLE testuser

<- VOICEMAIL 526 PARTNER_DISPNAME Test User

<- VOICEMAIL 526 ALLOWED_DURATION 600

<- VOICEMAIL 526 SUBJECT

<- VOICEMAIL 526 TIMESTAMP 1174384114

<- VOICEMAIL 526 DURATION 0

<- VOICEMAIL 526 STATUS BLANK

//---

// The status of the call object is set to INPROGRESS, incoming greeting

// is being downloaded

<- CALL 524 STATUS INPROGRESS

<- CALL 524 VM_ALLOWED_DURATION 600

<- CALL 524 VM_DURATION 0

<- VOICEMAIL 525 STATUS PLAYING

<- VOICEMAIL 525 STATUS BUFFERING

<- CALL 524 STATUS INPROGRESS

<- VOICEMAIL 525 DURATION 8

//---

// Incoming greeting has been received and is played

<- VOICEMAIL 525 TIMESTAMP 1125749735

<- VOICEMAIL 525 STATUS PLAYING

<- VOICEMAIL 525 STATUS PLAYED

//---

// System starts recording the outgoing voicemail message

<- VOICEMAIL 526 TIMESTAMP 1174384125

<- VOICEMAIL 526 STATUS RECORDING

//---

// Heartbeat notifications continue at 1 second interval throughout recording

<- CALL 524 STATUS INPROGRESS

<- VOICEMAIL 526 DURATION 6

<- CALL 524 VM_DURATION 6

<- VOICEMAIL 526 DURATION 7

<- CALL 524 VM_DURATION 7

<- VOICEMAIL 526 DURATION 8

<- CALL 524 VM_DURATION 8

<- VOICEMAIL 526 DURATION 9

<- CALL 524 VM_DURATION 9

//---

// Recording stopped, uploading the recorded message

<- VOICEMAIL 526 STATUS UPLOADING

<- CALL 524 STATUS INPROGRESS

<- VOICEMAIL 526 STATUS UPLOADED

<- CALL 524 STATUS FINISHED

<- CALL 524 VAA_INPUT_STATUS FALSE

Version

Protocol 6

Prior to API version 2.5 (protocol 6), VOICEMAIL command was used to leave voicemails. In future

development, CALLVOICEMAIL command should be used instead.

Also, following changes were made to this command in API version 2.5:

 When you create VOICEMAIL object, a CALL object is also created.

 After you play a voicemail, other person’s greeting is not deleted.

 When voicemail is recording, Skype returns a call xx vm_duration x response in addition to voicemail xx duration x message.

Notes

 Leaving a voicemail for a target user actually uses two types of voicemail object:

o a greeting type of voicemail object which is downloaded from the server

o an outgoing type of voicemail object which the user composes

OPEN VOICEMAIL

To open and start playing a voicemail:

Syntax

OPEN VOICEMAIL <id>

Response

If successful command is echoed back

Parameters

<id> – voicemail identifier

Errors

 ERROR 69 invalid open what

Open target is missing or misspelled

 ERROR 512 invalid voicemail ID

Voicemail identifier is missing, is invalid or does not exist

Notes

 Voicemail is downloaded from server automatically.

 The main Skype window comes into focus and switches to the Call List tab; use the ALTER VOICEMAILcommand to play without

a UI response.

To get hold of voicemail IDs, refer to SEARCH VOICEMAILS and SEARCH MISSEDVOICEMAILScommands.
ALTER VOICEMAIL

The ALTER VOICEMAIL command allows finer control over the VOICEMAIL object.

Syntax:

-> ALTER VOICEMAIL <id> action

<- ALTER VOICEMAIL <id> action

Parameters:

action – possible values:

 STARTPLAYBACK – starts playing downloaded voicemail

 STOPPLAYBACK – stops voicemail playback

 UPLOAD – uploads recorded voicemail from a local computer to a server

 DOWNLOAD – downloads voicemail object from a server to a local computer

 STARTRECORDING – stops playing greeting and starts recording, the equivalent to a user pressing the green button;

 STOPRECORDING – ends recording, the equivalent to a user pressing the red button

 DELETE – delete voicemail object

 STARTPLAYBACKINCALL – Initiates voicemail playback during an active call. The voicemail will be played both locally and to

remote call participant.

 SETUNPLAYED – sets voicemail status property to UNPLAYED.

In version 3.5.0.202 following ALTER commands were added to enable redirection of voice streams for voicemails:

 ALTER VOICEMAIL SET_INPUT

 ALTER VOICEMAIL SET_OUTPUT

 ALTER VOICEMAIL SET_CAPTURE_MIC

Notes

 STARTPLAYBACK plays voicemail but the window does not change to the Call List tab as it does with theOPEN

VOICEMAIL command.

 STOPRECORDING causes automatic message upload to the server.

 Voicemails are deleted as a background process and the elapsed time depends on the server response; during this period, the SEARCH

VOICEMAILS command still returns an ID for the voicemail, but the status is changed to DELETING .

Managing call forwarding

This section contains the commands to manage call forwarding.

Skype4Com example:

 CallForwarding.pas

GET PROFILE CALL_APPLY_CF

Use the GET PROFILE CALL_APPLY_CF command to query if call forwarding is enabled for a call.

Syntax

-> GET PROFILE CALL_APPLY_CF

Response

<- PROFILE CALL_APPLY_CF {True|False}

Version

Protocol 1.4
SET PROFILE CALL_APPLY_CF

Use the SET PROFILE CALL_APPLY_CF to enable or disable call forwarding.

Syntax

-> SET PROFILE CALL_APPLY_CF {True|False}

Response

<- PROFILE CALL_APPLY_CF {True|False}

Version

Protocol 1.4
GET PROFILE CALL_FORWARD_RULES

Use the GET PROFILE CALL_FORWARD_RULES to query the rules set for call forwarding. Note that the call

forwarding process starts after number of seconds given inCALL_NOANSWER_TIMEOUT property of

the PROFILE object.

Syntax:

-> GET PROFILE CALL_FORWARD_RULES

<- PROFILE CALL_FORWARD_RULES [<start_time>,<end_time>,{<username>|<+PSTN>}[

<start_time>,<end_time>,{<username>|<+PSTN>}]*]

Parameters:

 start_time – in seconds when connecting to this number/user starts

 end_time – in seconds when ringing to this number/user ends

 username – another Skype username to forward calls to

 +PSTN - PSTN number to forward a call

Note

A call can be forwarded to multiple numbers and the numbers can overlap in time, with all ringing and the first to pick up

the call takes it.

Version

Protocol 1.4
SET PROFILE CALL_FORWARD_RULES

Use the SET PROFILE CALL_FORWARD_RULES to set the rules for call forwarding. Note that the call forwarding

process starts after number of seconds given in CALL_NOANSWER_TIMEOUTproperty of the PROFILE object.

Syntax:

-> SET PROFILE CALL_FORWARD_RULES [<start_time>,<end_time>,{<username>|<+PSTN>}[

<start_time>,<end_time>,{<username>|<+PSTN>}]*]

<- PROFILE CALL_FORWARD_RULES [<start_time>,<end_time>,{<username>|<+PSTN>}[

<start_time>,<end_time>,{<username>|<+PSTN>}]*]

Parameters:

 start_time – in seconds when connecting to this number/user starts

 end_time – in seconds when ringing to this number/user ends

 username – another Skype username to forward calls to

 +PSTN - PSTN number to forward a call

Version

Protocol 1.4
GET PROFILE CALL_NOANSWER_TIMEOUT

Use the GET PROFILE CALL_NOANSWER_TIMEOUT to query the amount of seconds a forwarded call will ring before

timing out.

Syntax

-> GET PROFILE CALL_NOANSWER_TIMEOUT

Response

<- PROFILE CALL_NOANSWER_TIMEOUT 15

Note
1. seconds is the default timeout value.

Version

Protocol 1.4
SET PROFILE CALL_NOANSWER_TIMEOUT

Use the SET PROFILE CALL_NOANSWER_TIMEOUT to change the amount of seconds a forwarded call will ring

before timing out.

Syntax

-> SET PROFILE CALL_NOANSWER_TIMEOUT 20

Response

<- PROFILE CALL_NOANSWER_TIMEOUT 20

Note

This command replaces the default timeout value of 15 seconds.

Version

Protocol 1.4
GET PROFILE CALL_SEND_TO_VM

Use the GET PROFILE CALL_SEND_TO_VM to query if voicemail is enabled for forwarded calls.

Syntax

-> GET PROFILE CALL_SEND_TO_VM

Response

<- PROFILE CALL_SEND_TO_VM {True|False}

Version

Protocol 1.4
SET PROFILE CALL_SEND_TO_VM

Use the SET PROFILE CALL_SEND_TO_VM to enable (or disable) voicemail for forwarded calls.

Syntax

-> SET PROFILE CALL_SEND_TO_VM True

Response

<- PROFILE CALL_SEND_TO_VM True

Version

Protocol 1.4

Creating chats and sending messages

This section contains the commands for creating chats and sending messages.

CHAT CREATE

This command creates a chat object.

Syntax

-> CHAT CREATE [<target>, <target>*]

Response

<- CHAT <chat_id> STATUS <value>

Version

Protocol 5, updated in protocol 7 (API version 3.0)

Parameters

 <target> – username(s) with whom to create a chat

 <chat_id> – chat identifier; string (usually looks like “#me/$target;012345679012345”)

 <value> – depends on the type of chat created: DIALOG for a 1:1 chat; MULTI_SUBSCRIBED for a chat with multiple

participants

Notes

 From version 3.6 and later, opening chat windows (both from API and manually via UI) generate additional chat window open and

close notfication messages. Refer to the Chat notifications section for more information.

 The CHAT CREATE command does not open a chat window; use the OPEN CHAT command to do so.

 Starting from protocol 7, the parameter(s) are no longer mandatory. If no usernames are passed in parameters, an empty multichat is

created.

Example:
//--

// Creating chat with one target

-> CHAT CREATE anappo5

<- CHAT #anappo/$anappo5;2e4e763a2fc121ed STATUS DIALOG

-> OPEN CHAT #anappo/$anappo5;2e4e763a2fc121ed

<- OPEN CHAT #anappo/$anappo5;2e4e763a2fc121ed

//--

// Creating chat with no target

-> CHAT CREATE

<- CHAT #anappo/$72cb4c9d0871e6dc NAME #anappo/$72cb4c9d0871e6dc

<- CHAT #anappo/$72cb4c9d0871e6dc ACTIVITY_TIMESTAMP 0

<- CHAT #anappo/$72cb4c9d0871e6dc STATUS MULTI_SUBSCRIBED

<- CHAT #anappo/$72cb4c9d0871e6dc TYPE MULTICHAT

<- CHAT #anappo/$72cb4c9d0871e6dc STATUS UNSUBSCRIBED

<- CHATMEMBER 570 ROLE USER

<- CHAT #anappo/$72cb4c9d0871e6dc MYROLE USER

<- CHAT #anappo/$72cb4c9d0871e6dc MEMBERS anappo

<- CHAT #anappo/$72cb4c9d0871e6dc ACTIVEMEMBERS anappo

<- CHAT #anappo/$72cb4c9d0871e6dc MYSTATUS SUBSCRIBED

<- CHAT #anappo/$72cb4c9d0871e6dc STATUS MULTI_SUBSCRIBED

<- CHAT #anappo/$72cb4c9d0871e6dc TIMESTAMP 1175089677

-> OPEN CHAT #anappo/$72cb4c9d0871e6dc

<- OPEN CHAT #anappo/$72cb4c9d0871e6dc

//--

// Creating chat with two targets

-> CHAT CREATE anappo3, anappo5

<- CHAT #anappo/$8c9e3bb94643d668 NAME #anappo/$8c9e3bb94643d668

<- CHAT #anappo/$8c9e3bb94643d668 ACTIVITY_TIMESTAMP 0

<- CHAT #anappo/$8c9e3bb94643d668 STATUS MULTI_SUBSCRIBED

<- CHAT #anappo/$8c9e3bb94643d668 TYPE MULTICHAT

<- CHAT #anappo/$8c9e3bb94643d668 STATUS UNSUBSCRIBED

<- CHATMEMBER 585 ROLE USER

<- CHAT #anappo/$8c9e3bb94643d668 MYROLE USER

<- CHAT #anappo/$8c9e3bb94643d668 MEMBERS anappo

<- CHAT #anappo/$8c9e3bb94643d668 ACTIVEMEMBERS anappo

<- CHAT #anappo/$8c9e3bb94643d668 MYSTATUS SUBSCRIBED

<- CHAT #anappo/$8c9e3bb94643d668 STATUS MULTI_SUBSCRIBED

<- CHAT #anappo/$8c9e3bb94643d668 TIMESTAMP 1175089858

<- CHAT #anappo/$8c9e3bb94643d668 MEMBERS anappo anappo3 anappo5

<- CHAT #anappo/$8c9e3bb94643d668 FRIENDLYNAME anappo3, anappo5

-> OPEN CHAT #anappo/$8c9e3bb94643d668

<- OPEN CHAT #anappo/$8c9e3bb94643d668

Error codes:

615, “CHAT: chat with given contact is disabled” – added in Skype version 3.5 (protocol 8)
CHATMESSAGE

Syntax

CHATMESSAGE <chat_id> <message>

Response

CHATMESSAGE <id> STATUS SENDING

Parameters

 <chat_id> – chat identifier

 <message> – message text body to send

 <id> – chatmessage identifier

Version

Protocol 5

Errors

 ERROR 510 Invalid/unknown chat name given

Chat with does not exist

 ERROR 511 Sending a message to chat fails

Could not send message to chat (eg. not a member)

ALTER CHAT SETTOPIC

Changes chat topic.

Syntax:

-> ALTER CHAT <chat_id> SETTOPIC <topic>

<- ALTER CHAT SETTOPIC

See also ALTER CHAT SETTOPICXML command.

Version

Protocol 5

Errors

 ERROR 501 CHAT: No chat found for given chat

Chat with does not exist

ALTER CHAT SETTOPICXML

Enables you to set a chat topic that contains XML formatting elements. Note that the standard chat topic will be updated as

well, stripped of XML tags.

Syntax:

-> ALTER CHAT <chat_id> SETTOPICXML <topic>

<- ALTER CHAT SETTOPICXML

Example (without feedback notifications):
-> ALTER CHAT #test/$b9275b3b334341f2 SETTOPICXML <BLINK>topic is

blinking</BLINK>

-> ALTER CHAT #test/$b9275b3b334341f2 SETTOPICXML topic in bold

-> ALTER CHAT #test/$b9275b3b334341f2 SETTOPICXML <I>topic in italic</I>

-> ALTER CHAT #test/$b9275b3b334341f2 SETTOPICXML <U>topic with underline</U>

-> ALTER CHAT #test/$b9275b3b334341f2 SETTOPICXML Smiley: <SS type="smile">:-

)</SS>

-> ALTER CHAT #test/$b9275b3b334341f2 SETTOPICXML topic

in red

Version

Protocol 7 (API version 3.0)
ALTER CHAT ADDMEMBERS

This command adds new members to a chat.

Syntax:

-> ALTER CHAT <chat_id> ADDMEMBERS <target>[, <target>]*

<- ALTER CHAT ADDMEMBERS

Version

Protocol 5

Errors

 ERROR 501 CHAT: No chat found for given chat

Chat with does not exist

 ERROR 504 CHAT: Action failed

Could not add members into chat (eg is already a member; you have left chat)

ALTER CHAT LEAVE

This command causes user to leave the chat.

Syntax:

-> ALTER CHAT <chat_id> LEAVE

<- ALTER CHAT LEAVE

Errors

 ERROR 501 CHAT: No chat found for given chat

Chat with does not exist

 ERROR 504 CHAT: Action failed

Could not leave chat (for example if the user has already left this chat)

ALTER CHAT BOOKMARKED

Adds chat to the list of bookmarked chats.

Syntax to bookmark a chat:

-> ALTER CHAT <chat_id> BOOKMARK

<- ALTER CHAT <ID> BOOKMARKED TRUE

Syntax to remove a chat from list of bookmarked chats:

-> ALTER CHAT <ID> UNBOOKMARK

<- ALTER CHAT <ID> BOOKMARKED FALSE

Refer to following SEARCH commands on how to obtain a chat ID

SEARCH CHATS

SEARCH ACTIVECHATS

SEARCH MISSEDCHATS

SEARCH RECENTCHATS

SEARCH BOOKMARKEDCHATS

Version

Protocol 6, Skype API version 2.5
GET CHAT CHATMESSAGES

Returns IDs of chatmessage objects in a specified chat.

Syntax:

-> GET CHAT <chat_id> CHATMESSAGES

<- CHAT <chat_id> CHATMESSAGES <id>[, <id>]*

Version:

Protocol 5

Errors

 ERROR 501 CHAT: No chat found for given chat

Chat with does not exist

GET CHAT RECENTCHATMESSAGES

Syntax

GET CHAT <chat_id> RECENTCHATMESSAGES

Response

CHAT <chat_id> RECENTCHATMESSAGES <id>[, <id>]*

Version

Protocol 5

Errors

 ERROR 501 CHAT: No chat found for given chat

Chat with does not exist

SET CHATMESSAGE SEEN

Syntax

SET CHATMESSAGE <id> SEEN

Response

CHATMESSAGE <id> STATUS <value>

Parameters

 <id> – chat message ID.

 <value> – new value for chat message status; refer to CHATMESSAGE object for status values

Version

Protocol 3

Example
-> SET CHATMESSAGE 61 SEEN

<- CHATMESSAGE 61 STATUS READ

Errors
ERROR 18 SET: invalid WHAT

CHATMESSAGE command is missing or misspelled

ERROR 31 Unknown message id

Unknown chat message ID

ERROR 30 Invalid message id

Chat message ID is misspelled or contains non-permitted symbols (numeric are

permitted)

ERROR 32 Invalid WHAT

Invalid status given to chat message, for example the message is already

marked as seen

SET CHATMESSAGE BODY

This command enables you to change the text of a chat message.

Syntax:

-> SET CHATMESSAGE <chatmessage_id> BODY <text>

Weather a chat message text is changeable can be determined by checking the IS_EDITABLEproperty of

a CHATMESSAGE object.

The rules for allowing editing are:

 Everyone can change their own messages.

 Creator of public chat can edit messages from others.

 Masters can edit messages originating from others, except those from the chat creator.

 Helpers and below cannot edit messages from others.

Refer to CHAT ROLES section for the list of chat roles.

Example:
//--

// First lets send out a chat message

-> CHATMESSAGE #anappo/$a1044019f5dc8c48 Test chat message

<- CHATMESSAGE 864 STATUS SENDING

<- CHAT #anappo/$a1044019f5dc8c48 ACTIVITY_TIMESTAMP 1175093328

<- CHATMESSAGE 864 STATUS SENT

//--

// Then lets see if we can edit it..

-> GET CHATMESSAGE 864 IS_EDITABLE

<- CHATMESSAGE 864 IS_EDITABLE TRUE

//--

// Then see if we can change the message text

-> SET CHATMESSAGE 864 BODY Test message after being edited

<- CHATMESSAGE 864 BODY Test message after being edited

<- CHATMESSAGE 864 EDITED_TIMESTAMP 1175093385

<- CHATMESSAGE 864 EDITED_BY anappo

<- CHATMESSAGE 864 BODY Test message after being edited

Version

Protocol 7 (API version 3.0)
SET MESSAGE SEEN – obsolete

Mark message as seen by the user and remove it from the missed messages list. This command is obsolete and has been

replaced by the SET CHATMESSAGE SEEN command.

Syntax

SET MESSAGE <id> SEEN

Response

MESSAGE <id> STATUS value

Properties

 <id> – message ID;

 value – (new) status value

Version

Protocol 1, deprecated in protocol 3

Example
-> SET MESSAGE 1578 SEEN

<- MESSAGE 1578 STATUS READ

Errors

 ERROR 18 SET: invalid WHAT

Object name missing or misspelled.

 ERROR 30 Invalid message id

ID includes other than numeric characters.

 ERROR 31 Unknown message id

Message with specified ID does not exist in current user’s message history.

 ERROR 32 Invalid WHAT

Property name missing or misspelled.

MESSAGE – obsolete

The MESSAGE command is obsolete and has been replaced by the CHATMESSAGE command.

Syntax

MESSAGE <target> <text>

Response

CHATMESSAGE <id> STATUS SENDING (protocol 3 and up)

MESSAGE <id> STATUS SENDING (protocol 1 and 2)

Parameters

 <target> – target username to whom to send the message

 <text> – message body, for example Please call me

Version

Protocol 1

Errors
ERROR 26 Invalid user handle

The target username is missing or includes symbols which are not premitted

ERROR 43 Cannot send empty message

The message has no body.

Notes

When message sending fails, a LEFT-type message is received. The message’s LEAVEREASONshows why it failed. See

the CHATMESSAGE object for a description.

Example
-> MESSAGE echo123 Please call me

<- MESSAGE 982 STATUS SENDING

<- MESSAGE 982 STATUS SENT

GET CHAT MEMBEROBJECTS

This command provides list of CHATMEMBER object IDs that represent chat participants.

Syntax:

GET CHAT <id> MEMBEROBJECTS

Refer to

 CHATMEMBER object for a list of CHATMEMBER properties.

 GET CHATMEMBER command for how to access CHATMEMBER properties.

 SEARCH CHATS for how to get a list of CHAT IDs.

Example:
-> GET CHAT #test/$test3;5f7cdbdd32dc731c MEMBEROBJECTS

<- CHAT #test/$3;5f7cdbdd32dc731c MEMBEROBJECTS 453, 454, 1465

Version

Protocol 7 (API version 3.0)
GET CHATMEMBER

This command provides read access to objects representing chat participants.

Syntax:

GET CHATMEMBER <id> <property>

Refer to

 CHATMEMBER object for a list of object properties.

 GET CHAT MEMBEROBJECTS command for a list of object IDs.

Example:
-> GET CHAT #test/$test3;5f7cdbdd32dc731c MEMBEROBJECTS

<- CHAT #test/$3;5f7cdbdd32dc731c MEMBEROBJECTS 453, 454, 1465

-> GET CHATMEMBER 1465 IDENTITY

<- CHATMEMBER 1465 IDENTITY test_p

-> GET CHATMEMBER 1465 CHATNAME

<- CHATMEMBER 1465 CHATNAME #test/$test3;5f7cdbdd32dc731c

-> GET CHATMEMBER 1465 ROLE

<- CHATMEMBER 1465 ROLE USER

-> GET CHATMEMBER 1465 IS_ACTIVE

<- CHATMEMBER 1465 IS_ACTIVE TRUE

Version

Protocol 7 (API version 3.0)
ALTER CHAT JOIN

This command enables you to re-join a Public chat that you have previously left. This command assumes a CHAT object is

already present in the local system.

Note that this command does work with non-public multichats.

*

Syntax:

ALTER CHAT <chat_id> JOIN

Example:
//---

-

// Leaving public chat #anappo/$a1044019f5dc8c48

-> ALTER CHAT #anappo/$a1044019f5dc8c48 LEAVE

<- ALTER CHAT LEAVE

<- MESSAGE 392 STATUS SENDING

<- CHAT #anappo/$a1044019f5dc8c48 MEMBERS anappo2 anappo3

<- CHAT #anappo/$a1044019f5dc8c48 ACTIVEMEMBERS anappo2 anappo3

<- CHAT #anappo/$a1044019f5dc8c48 MYSTATUS UNSUBSCRIBED

<- CHAT #anappo/$a1044019f5dc8c48 STATUS UNSUBSCRIBED

<- CHAT #anappo/$a1044019f5dc8c48 BOOKMARKED FALSE

<- MESSAGE 392 STATUS SENT

//---

-

// Re-joining the chat

-> ALTER CHAT #anappo/$a1044019f5dc8c48 JOIN

<- CHAT #anappo/$a1044019f5dc8c48 MYSTATUS CONNECTING

<- CHAT #anappo/$a1044019f5dc8c48 STATUS UNSUBSCRIBED

<- ALTER CHAT JOIN

<- CHAT #anappo/$a1044019f5dc8c48 MEMBERS anappo2 anappo3

<- CHAT #anappo/$a1044019f5dc8c48 ACTIVEMEMBERS anappo2 anappo3

<- CHAT #anappo/$a1044019f5dc8c48 BOOKMARKED TRUE

<- CHAT #anappo/$a1044019f5dc8c48 MEMBERS anappo2 anappo3

<- CHAT #anappo/$a1044019f5dc8c48 ACTIVEMEMBERS anappo2 anappo3

<- CHAT #anappo/$a1044019f5dc8c48 MYSTATUS WAITING_REMOTE_ACCEPT

<- CHAT #anappo/$a1044019f5dc8c48 STATUS UNSUBSCRIBED

<- CHATMEMBER 75 IS_ACTIVE FALSE

<- CHATMEMBER 396 IS_ACTIVE FALSE

<- CHAT #anappo/$a1044019f5dc8c48 MEMBERS anappo anappo2 anappo3

<- CHAT #anappo/$a1044019f5dc8c48 ACTIVEMEMBERS anappo anappo3

<- CHAT #anappo/$a1044019f5dc8c48 MYSTATUS SUBSCRIBED

<- CHAT #anappo/$a1044019f5dc8c48 STATUS MULTI_SUBSCRIBED

<- CHATMEMBER 75 IS_ACTIVE TRUE

<- CHATMEMBER 396 IS_ACTIVE TRUE

<- CHAT #anappo/$a1044019f5dc8c48 ACTIVEMEMBERS anappo anappo2 anappo3

<- MESSAGE 398 STATUS READ

Errors

 ERROR 504 CHAT: action failed

Attempt to re-join dialog or multichat. This command only enables you to re-join public chats.

Version

Protocol 7 (API version 3.0)
ALTER CHAT CLEARRECENTMESSAGES

This command clears recent chat messages in a given chat. Note that this command does not actually update user interface

when a Skype client chat window for that chat is open. To see the effect, close the chat window and re-open it.

Syntax:

ALTER CHAT <chat_id> CLEARRECENTMESSAGES

Example:
-> ALTER CHAT #anappo/$test_p;297fcefb07ffc4b2 CLEARRECENTMESSAGES

<- ALTER CHAT CLEARRECENTMESSAGES

Version

Protocol 7 (API version 3.0)
ALTER CHAT SETALERTSTRING

This command enables you to set up a chat alert string. Normally, a small notification window will pop up at system tray

when someone posts a message in a chat while the chat window is closed. When an alert string is set, the notification

window will only appear when the message contains value set in SETALERTSTRING property.

Note that when setting this value from API, first symbol of the alert string is assumed to be “=” and gets stripped. To

prevent first symbol of your alert string from being stripped, add “=” in front of it.

Syntax:

ALTER CHAT <chat_id> SETALERTSTRING <alert_string>

Example:
-> ALTER CHAT #anappo/$a1044019f5dc8c48 SETALERTSTRING "=test"

<- ALTER CHAT SETALERTSTRING

Version

Protocol 7 (API version 3.0)
ALTER CHAT ACCEPTADD

This command is used for accepting invitations to shared contact groups. In other chat contexts, invitations are either

accepted or declined automatically, depending on user’s privacy settings.

Syntax:

ALTER CHAT <chat_id> ACCEPTADD

Version

Protocol 7 (API version 3.0)
ALTER CHAT DISBAND

This command removes all chat participants from the chat and closes it.

Syntax:

ALTER CHAT <chat_id> DISBAND

Example:
-> ALTER CHAT #anappo/$a1044019f5dc8c48 DISBAND

<- ALTER CHAT DISBAND

<- CHAT #anappo/$a1044019f5dc8c48 MYSTATUS CHAT_DISBANDED

<- CHAT #anappo/$a1044019f5dc8c48 STATUS UNSUBSCRIBED

Version

Protocol 7 (API version 3.0)

Public Chats

Public Chats were introduced in API version 3.0 Public Chats are an extension of existing multichat functionality.

From API point of view, public chats differ from multichats in that:

 CREATE command works somewhat differently, as a public chat identifier is formed differently from multichats;

Public chats have a user hierarchy with different privilege levels and a set of tools for chat administration (similar to

administration of IRC channels). These administration tools are actually available for standard multichats as well

(API commands such as KICK work in multichats, altho the Skype user interface for setting privileges is not available for

multichats).

More or less everything listed under Creating chats and sending messages section is also applicable to public chats. The

list of sections below is specific to public chats.
CHAT ROLES and PRIVILEGES

 CREATOR – member who created the chat. There can be only one creator per chat. Only creator can promote other members to

masters.

 MASTER – Also known as chat hosts. Masters cannot promote other people to masters.

 HELPER – a semi-privileged member. Helpers will not be affected by the USERS_ARE_LISTENERS option. Helpers cannot

promote or demote other members.

 USER – regular members who can post messages into the chat.

 LISTENER – a demoted member who can only receive messages but not post anything into the chat.

 APPLICANT – a member waiting for acceptance into the chat. Member cannot be demoted to applicants once they have been

accepted.

Refer to

 ALTER CHATMEMBER CANSETROLETO command for how to determine if it is possible to change the role of any given chat

member.

 ALTER CHATMEMBER SETROLETO command for more info on how to change chat member roles.

ALTER CHAT SETPASSWORD

This command enables you to set password protection to a chat channel.

Syntax:

ALTER CHAT <chat_id> SETPASSWORD <password> <password_hint>

Example:
-> ALTER CHAT #anappo/$a1044019f5dc8c48 SETPASSWORD test2 password is test2

<- ALTER CHAT SETPASSWORD

<- CHAT #anappo/$a1044019f5dc8c48 PASSWORDHINT password is test2

Note that the password must be one word – without any whitespaces in it. All subsequent words in command parameters

will be considered as password hint. Password hint will be displayed to users when they join the chat.

Version

Protocol 7 (API version 3.0)
ALTER CHAT ENTERPASSWORD

This command enables you to enter passwords from within your own code, when joining password-protected chat

channels.

Syntax:

ALTER CHAT <chat_id> ENTERPASSWORD <password>

Example:
//---

// While trying to connect to a public password-protected channel,

// we get following messages:

<- CHAT #test_l/$4ea116d4c216baef PASSWORDHINT "password is test"

<- CHAT #test_l/$4ea116d4c216baef MYSTATUS PASSWORD_REQUIRED

<- CHAT #test_l/$4ea116d4c216baef STATUS UNSUBSCRIBED

//---

// Lets supply a wrong password first and see what happens..

-> ALTER CHAT #test_l/$4ea116d4c216baef ENTERPASSWORD test2

<- ALTER CHAT ENTERPASSWORD

<- CHAT #test_l/$4ea116d4c216baef MYSTATUS CONNECTING

<- CHAT #test_l/$4ea116d4c216baef STATUS UNSUBSCRIBED

<- CHAT #test_l/$4ea116d4c216baef MYSTATUS PASSWORD_REQUIRED

<- CHAT #test_l/$4ea116d4c216baef STATUS UNSUBSCRIBED

//---

// Now lets supply correct password:

-> ALTER CHAT #test_l/$4ea116d4c216baef ENTERPASSWORD test

<- ALTER CHAT ENTERPASSWORD

<- CHAT #test_l/$4ea116d4c216baef MYSTATUS CONNECTING

<- CHAT #test_l/$4ea116d4c216baef STATUS UNSUBSCRIBED

<- CHAT #test_l/$4ea116d4c216baef MYSTATUS WAITING_REMOTE_ACCEPT

<- CHAT #test_l/$4ea116d4c216baef STATUS UNSUBSCRIBED

<- CHAT #test_l/$4ea116d4c216baef MYROLE USER

<- CHAT #test_l/$4ea116d4c216baef MEMBERS anappo test_l

<- CHAT #test_l/$4ea116d4c216baef ACTIVEMEMBERS anappo test_l

<- CHAT #test_l/$4ea116d4c216baef TIMESTAMP 1174906897

<- CHAT #test_l/$4ea116d4c216baef ADDER test_l

<- CHAT #test_l/$4ea116d4c216baef GUIDELINES test guidelines

<- MESSAGE 557 STATUS RECEIVED

<- CHAT #test_l/$4ea116d4c216baef TOPIC TestingPublicChats2

<- CHAT #test_l/$4ea116d4c216baef OPTIONS 1

<- CHATMEMBER 556 ROLE LISTENER

<- CHAT #test_l/$4ea116d4c216baef MYROLE LISTENER

<- CHATMEMBER 547 ROLE CREATOR

<- CHAT #test_l/$4ea116d4c216baef MYSTATUS SUBSCRIBED

<- CHAT #test_l/$4ea116d4c216baef STATUS MULTI_SUBSCRIBED

<- CHAT #test_l/$4ea116d4c216baef FRIENDLYNAME TestingPublicChats2

<- MESSAGE 558 STATUS RECEIVED

Version

Protocol 7 (API version 3.0)
ALTER CHAT SETOPTIONS

This command enables you to change chat options.

Syntax:

ALTER CHAT <chat_id> SETOPTIONS <options bitmap>

Chat options bits:

 1 – JOINING_ENABLED – when this bit is off, new users cannot join the chat.

 2 – JOINERS_BECOME_APPLICANTS – when this bit is on, new users will be able to join the chat but they will be unable to post

or receive messages until authorized by one of the chat administrators (CREATOR orMASTER).

 4 – JOINERS_BECOME_LISTENERS – when this bit is on, new users will be able to receive message in chat but unable to post

until promoted to USER role. Basically a read-only flag for new users.

 8 – HISTORY_DISCLOSED – when this bit is off, newly joined members can see chat history prior to their joining. Maximum

amount of history backlog available is either 400 messages or 2 weeks of time, depending on which limit is reached first.

 16 – USERS_ARE_LISTENERS – read-only flag for chat members with USER role.

 32 – TOPIC_AND_PIC_LOCKED_FOR_USERS – when this bit of options is off, USER level chat members can change chat topic

and the topic picture.

Example:
//---

--

// Setting flags: JOINING_ENABLED, JOINERS_BECOME_LISTENERS,

HISTORY_DISCLOSED

// Adding up the bits: 1 + 4 + 8 = 13

-> ALTER CHAT #anappo/$a1044019f5dc8c48 SETOPTIONS 13

<- MESSAGE 678 STATUS SENDING

<- ALTER CHAT SETOPTIONS

<- CHAT #anappo/$a1044019f5dc8c48 OPTIONS 13

<- MESSAGE 678 STATUS SENT

Version

Protocol 7 (API version 3.0)
ALTER CHATMEMBER SETROLETO

This command enables chat administrators (chat CREATORS AND MASTERS) to set privilege levels (roles) for other chat

members.

Syntax:

-> ALTER CHATMEMBER <id> SETROLETO CREATOR|MASTER|HELPER|USER|LISTENER

Refer to

 Chat roles section for more information on different roles. Note that you cannot demote a user toLISTENER role when the chat is

already in ready-only mode (USERS_ARE_LISTENERS chat option).

 ALTER CHATMEMBER CANSETROLETO command for how to determine if it is possible to change the role of any given chat

member.

Example:

-> GET CHAT #anappo/$anappo3;5f7cdbdd32dc731c MEMBEROBJECTS

<- CHAT #anappo/$anappo3;5f7cdbdd32dc731c MEMBEROBJECTS 1846, 2227, 2495

-> GET CHATMEMBER 2495 IDENTITY

<- CHATMEMBER 2495 IDENTITY anappo2

-> GET CHATMEMBER 2495 ROLE

<- CHATMEMBER 2495 ROLE HELPER

-> ALTER CHATMEMBER 2495 SETROLETO USER

<- ALTER CHATMEMBER SETROLETO

<- MESSAGE 2620 STATUS SENDING

<- CHATMEMBER 2495 ROLE USER

Version

Protocol 7 (API version 3.0)
ALTER CHATMEMBER CANSETROLETO

This command can be used to determine weather current user is able to change the privilege level of another chat member.

Syntax:

-> ALTER CHATMEMBER <id> CANSETROLETO

CREATOR|MASTER|HELPER|USER|LISTENER|APPLICANT

<- ALTER CHATMEMBER CANSETROLETO TRUE|FALSE

Note that unlike other ALTER commands, this one doesn’t actually change object properties.

Refer to

 Chat roles section for more information on different roles.

 ALTER CHATMEMBER SETROLETO command for more info on how to change chat member roles.

Example:
-> GET CHAT #test/$test3;5f7cdbdd32dc731c MEMBEROBJECTS

<- CHAT #test/$test3;5f7cdbdd32dc731c MEMBEROBJECTS 1846, 2227, 2495

-> GET CHATMEMBER 2495 IDENTITY

<- CHATMEMBER 2495 IDENTITY testuser

-> ALTER CHATMEMBER 2495 CANSETROLETO HELPER

<- ALTER CHATMEMBER CANSETROLETO TRUE

-> ALTER CHATMEMBER 2495 SETROLETO HELPER

<- ALTER CHATMEMBER SETROLETO

<- MESSAGE 3166 STATUS SENDING

<- CHATMEMBER 2495 ROLE HELPER

Version

Protocol 7 (API version 3.0)
ALTER CHAT KICK

With this command, chat member with sufficient privilege level (master or creator) can remove another member from

chat.

Note that after being kicked from the channel, the kicked member can re-join the chat. For more permanent removal,

see ALTER CHAT KICKBAN command.

Syntax:

ALTER CHAT <chat_id> KICK <skypename1[, skypename2 ..]>

Example:
-> ALTER CHAT #test/$a1044019f5dc8c48 KICK test2

<- ALTER CHAT KICK

Version

Protocol 7 (API version 3.0)
ALTER CHAT KICKBAN

With this command, chat member with sufficient privilege level (master or creator) can permanently remove another

member from chat. Note that kickban only prevents the user from re-joining the chat. Banned users can be added back to

the chat by administrators from within the chat.

Syntax:

ALTER CHAT <chat_id> KICKBAN <skypename1[, skypename2 ..]>

Example:
-> ALTER CHAT #test/$a1044019f5dc8c48 KICKBAN test2

<- ALTER CHAT KICKBAN

Version

Protocol 7 (API version 3.0)
ALTER CHAT FINDUSINGBLOB

This command searches for existing CHAT object with given BLOB property value and returns chat ID and status. Refer

to CHAT object for more information.

Syntax:

CHAT FINDUSINGBLOB <blob>

Example:
-> CHAT FINDUSINGBLOB

LsgqqqCTpxWYjt9PL1hSvGDOiPhqUuQAHxI7w7Qu7gJ3VZv_q_99ZJO4lF9Dfaw

<- CHAT #anappo2/$d936403094338dbb STATUS MULTI_SUBSCRIBED

Version

Protocol 7 (API version 3.0)
ALTER CHAT CREATEUSINGBLOB

This command creates a chat object, based on public chat blob. This enables you to join public chats from within your

own code, assuming that you have somehow obtained the chat blob.

Syntax:

CHAT CREATEUSINGBLOB <blob>

Example:
//---

// What we start is a blob of a public chat we parsed out of a

// public chat URL or, for example, got sent via another chat.

// that blob is: 6aM81Z5mZRyricRDcjkdy5bf3Y6TsCbVvaxNVVCcYSVsQxRGhlAVmTgpYexh

// First we create a CHAT object.

-> CHAT CREATEUSINGBLOB

6aM81Z5mZRyricRDcjkdy5bf3Y6TsCbVvaxNVVCcYSVsQxRGhlAVmTgpYexh

<- CHAT #anappo/$b9275b3b334341f2 NAME #anappo/$b9275b3b334341f2

<- CHAT #anappo/$b9275b3b334341f2 ACTIVITY_TIMESTAMP 0

<- CHAT #anappo/$b9275b3b334341f2 STATUS UNSUBSCRIBED

<- CHAT #anappo/$b9275b3b334341f2 TYPE MULTICHAT

<- CHAT #anappo/$b9275b3b334341f2 MYSTATUS UNSUBSCRIBED

<- CHAT #anappo/$b9275b3b334341f2 STATUS UNSUBSCRIBED

//---

// Now that we have chat object and it's ID, we can join the chat

-> ALTER CHAT #anappo/$b9275b3b334341f2 JOIN

<- CHAT #anappo/$b9275b3b334341f2 MYSTATUS CONNECTING

<- CHAT #anappo/$b9275b3b334341f2 STATUS UNSUBSCRIBED

<- ALTER CHAT JOIN

//---

// Note that this is our privilege level (role) in this chat

<- CHATMEMBER 293 ROLE USER

<- CHAT #anappo/$b9275b3b334341f2 MEMBERS anappo

<- CHAT #anappo/$b9275b3b334341f2 FRIENDLYNAME Avo Nappo

<- CHAT #anappo/$b9275b3b334341f2 ACTIVEMEMBERS anappo

<- CHAT #anappo/$b9275b3b334341f2 ACTIVITY_TIMESTAMP 1175004600

<- CHAT #anappo/$b9275b3b334341f2 BOOKMARKED TRUE

<- CHAT #anappo/$b9275b3b334341f2 MEMBERS anappo anappo4

<- CHAT #anappo/$b9275b3b334341f2 FRIENDLYNAME Avo Nappo, anappo4

<- CHAT #anappo/$b9275b3b334341f2 ACTIVEMEMBERS anappo anappo4

<- CHAT #anappo/$b9275b3b334341f2 MYSTATUS WAITING_REMOTE_ACCEPT

<- CHAT #anappo/$b9275b3b334341f2 STATUS UNSUBSCRIBED

<- CHATMEMBER 294 IS_ACTIVE FALSE

<- CHAT #anappo/$b9275b3b334341f2 MYROLE USER

<- CHAT #anappo/$b9275b3b334341f2 MEMBERS anappo anappo4 test_p

<- MESSAGE 298 STATUS RECEIVED

<- CHAT #anappo/$b9275b3b334341f2 ACTIVEMEMBERS anappo test_p

<- CHAT #anappo/$b9275b3b334341f2 TIMESTAMP 1175003077

<- CHAT #anappo/$b9275b3b334341f2 ADDER anappo

<- CHAT #anappo/$b9275b3b334341f2 TOPIC TestingPublicChat3

<- CHAT #anappo/$b9275b3b334341f2 OPTIONS 1

//---

// Following notification tells us chatmember ID of the chat owner (creator)

<- CHATMEMBER 293 ROLE CREATOR

<- CHAT #anappo/$b9275b3b334341f2 MYSTATUS SUBSCRIBED

<- CHAT #anappo/$b9275b3b334341f2 STATUS MULTI_SUBSCRIBED

<- CHAT #anappo/$b9275b3b334341f2 FRIENDLYNAME TestingPublicChat3

<- MESSAGE 299 STATUS RECEIVED

<- CHATMEMBER 294 IS_ACTIVE TRUE

<- CHAT #anappo/$b9275b3b334341f2 ACTIVEMEMBERS anappo anappo4 test_p

//---

// We can use GET CHATMEMBER 293 IDENTITY to get creator's Skypename

-> GET CHATMEMBER 293 IDENTITY

<- CHATMEMBER 293 IDENTITY anappo

//---

// Opening chat window in UI

-> OPEN CHAT #anappo/$b9275b3b334341f2

<- OPEN CHAT #anappo/$b9275b3b334341f2

Version

Protocol 7 (API version 3.0)
ALTER CHAT SETGUIDELINES

This command enables you to set the Guidelines message for public chats. The guideline message is displayed at the top

of the chat window.

Syntax:

ALTER CHAT <chat_id> SETGUIDELINES <guidelines>

Example:
-> ALTER CHAT #anappo/$a1044019f5dc8c48 SETGUIDELINES these here are test

guidelines

<- MESSAGE 744 STATUS SENDING

<- ALTER CHAT SETGUIDELINES

<- CHAT #anappo/$a1044019f5dc8c48 GUIDELINES these here are test guidelines

<- MESSAGE 744 STATUS SENT

Version

Protocol 7 (API version 3.0)

Managing contacts and groups

Users can group contacts, for example, creating separate groups for friends, family, and work. To add a user to a group,

the user must be in the contact list. Contacts can be in multiple groups at the same time. Refer to the GROUP object for a

description of the object properties.

This section contains commands used for grouping the contacts.

GET GROUP USERS

The GET GROUP USERS command queries the members of a group.

Syntax

-> GET GROUP <id> USERS

Response

<- GROUP <id> USERS <user1>, <user2>, <user3>

Refer to SEARCH GROUPS on how to get the group ID list.

Version

Protocol 5
GET GROUP VISIBLE

The GET GROUP VISIBLE command queries if a group is visible to the user.

Syntax

-> GET GROUP <id> VISIBLE

Response

<- GROUP <id> VISIBLE {True|False}

Refer to SEARCH GROUPS on how to get the group ID list.

Version

Protocol 5
GET GROUP EXPANDED

The GET GROUP EXPANDED command queries whether a group is expanded in the Skype window.

Syntax

-> GET GROUP <id> EXPANDED

Response

<- GROUP <id> EXPANDED {True|False}

Refer to SEARCH GROUPS on how to get the group ID list.

Version

Protocol 5
GET GROUP DISPLAYNAME

The GET GROUP DISPLAYNAME gets the displayname for a group.

Syntax

-> GET GROUP <id> DISPLAYNAME

Response

<- GROUP <id> DISPLAYNAME <name>

Refer to SEARCH GROUPS on how to get the group ID list.

Version

Protocol 5
SET GROUP DISPLAYNAME

The SET GROUP DISPLAYNAME command changes the displayname for a group.

Syntax

-> SET GROUP <id> DISPLAYNAME <name>

Response

<- GROUP <id> DISPLAYNAME <name>

Refer to SEARCH GROUPS on how to get the group ID list.

Version

Protocol 5
GET GROUP TYPE

The GET GROUP TYPE command queries the group type.

Syntax

-> GET GROUP <id> TYPE

Response

<- GROUP <id> TYPE <group_type>

Refer to the SEARCH GROUPS command on how to get the group ID list.

Refer to the GROUP object for a list and description of group types.

Version

Protocol 5
CREATE GROUP

The CREATE GROUP command creates a contact group, for example a group named Family.

Syntax

-> CREATE GROUP <Family>

Response

<- CREATE GROUP <Family>

The command triggers a number of GROUP properties events:
<- GROUP <234> TYPE CUSTOM_GROUP

<- GROUP <234> NROFUSERS 0

<- GROUP <234> NROFUSERS_ONLINE 0

<- GROUP <234> CUSTOM_GROUP_ID <111>

<- GROUP <234> DISPLAYNAME <Family>

<- GROUP <234> USERS

The command triggers the following notification:

<- GROUP <234> USERS <user1> <user2>...

Version

Protocol 5
DELETE GROUP

The DELETE GROUP removes a contact group.

Syntax

-> DELETE GROUP <234>

Response

<- DELETE GROUP <234>

Refer to SEARCH GROUPS on how to get the group ID list.

The command triggers the following notifications:
<- DELETED GROUP <234>

<- GROUP <234> USERS <user1> <user2>...

ALTER GROUP ADDUSER

The ALTER GROUP ADDUSER command adds contacts to a group.

Syntax

-> ALTER GROUP <234> ADDUSER <userhandle|PSTN>

Response

<- ALTER GROUP <234> ADDUSER <userhandle|PSTN>

Parameters

ADDUSER <userhandle|PSTN>

This command triggers the following notification:

<- GROUP <234> NROFUSERS y

Note:

A contact must exist in a contactlist to be added to a group.

Refer to SEARCH GROUPS on how to get the group ID list.

Version

Protocol 5
ALTER GROUP REMOVEUSER

The ALTER GROUP REMOVEUSER command removes contacts from a group.

Syntax:

-> ALTER GROUP <group_id> REMOVEUSER <userhandle|PSTN>

<- ALTER GROUP <group_id> REMOVEUSER <userhandle|PSTN>

Parameters:

REMOVEUSER <userhandle|PSTN>

Example:
-> ALTER GROUP 49 REMOVEUSER anappo5

// notification - new size of group 49 is 6 contacts

<- GROUP 49 NROFUSERS 6

// Removed user was placed in system group "Ungrouped" (group 52 in this

case)

<- GROUP 52 NROFUSERS 1

<- ALTER GROUP 49 REMOVEUSER anappo5

Refer to SEARCH GROUPS on how to get the group ID list.

Version:

Protocol 5
Sharing contact groups

Shared contact groups differ from Send Contacts functionality in that adding users to shared groups will automatically

cause cross-authorization attempts between users.

To change an existing contact group into shared contact group:

-> ALTER GROUP <id> SHARE [<text>]

Where is the contact group ID and text is invitation message displayed to the invited user.

To accept invitation to a shared group:

-> ALTER GROUP <id> ACCEPT

To decline invitation to a shared group:

-> ALTER GROUP <id> DECLINE

Refer to SEARCH GROUPS on how to get the list of group IDs.

Version

Protocol 6
SET USER DISPLAYNAME

The SET USER DISPLAYNAME command changes the display name of a contact.

By default this USER object property is empty. If a value is assigned to this property with SET <skypename>

DISPLAYNAME <value> then that value will be displayed in Skype UI instead of user’s FULLNAME.

Syntax:

-> SET USER <handle|PSTN> DISPLAYNAME <name>

<- SET USER <handle|PSTN> DISPLAYNAME <name>

Version

Protocol 5

Search commands

The search command requests specific information about objects. If no target is specified, all results for specified objects

are returned.

Syntax:

SEARCH USERS | FRIENDS | CALLS

[<target>] | ACTIVECALLS | MISSEDCALLS |VOICEMAILS | CHATS | MISSEDCHATS | ACTIVECHATS | RECEN

TCHATS |BOOKMARKEDCHATS | CHATMESSAGES [<target>] | MISSEDCHATMESSAGES | MESSAGES

[<target>] | MISSEDMESSAGES | USERSWAITINGMYAUTHORIZATION | GROUPS [{ ALL | CUSTOM |

HARDWIRED }] | FILETRANSFERS | ACTIVEFILETRANSFERS | SMSS |MISSEDSMSS

Notes

 In Skype for Windows 1.1 only one search at a time is allowed; since version 1.2 multiple searches can executed at the same time;

 The number of search results is not limited.

 SkypeOut contacts: since Skype for Windows 1.2 release it is possible to get the list of SkypeOut contacts which are part of the main

contact list and they are returned with the contact list numbers, if the SEARCH FRIENDS command is executed. To get more

information about the number in a current user’s SkypeOut contacts use the GET USER <number> <fullname>" command.

This section contains the search commands.

SEARCH FRIENDS

Syntax

SEARCH FRIENDS

Response

USERS [user[, user]*]

returns a list of found usernames; an empty list if no match is found

 ERROR 67 target not allowed with SEARCH FRIENDS

A target(such as mike) was specified with the SEARCH FRIENDS command

Version

Protocol 1

Example
-> SEARCH FRIENDS

<- USERS tim, joe, mike

SEARCH USERS

Syntax

-> SEARCH USERS <target>

Parameters

<target> – part of username or e-mail to match. If the search string contains “@”, the search is performed by e-mail

address and has to be an exact match. If the search string is a valid Skype username, the search is performed on the full

name and username fields. In all other cases the search is made on the full name field only.

Response

<- USERS [<username>[, <username>]*]

returns a list of found usernames; list is empty if no match was found

Errors

 ERROR 4 Empty target not allowed

Target username is not specified

Notes

When running the SEARCH USERS command, USER notifications are reported back to the APIclient as users are found

on the network. The API client should ignore these events and request each user’s property after the search.

Version

Protocol 1

Example:
-> SEARCH USERS echo123

<- USERS echo123, echo1232885

SEARCH CALLS

Syntax

SEARCH CALLS <target>

Parameters

<target> – username. Specifying a target is optional. If a target is specified, Skype searches the call history between the

current user and the target user.

Response

<- CALLS [id[, id]*]

Returns a list of call IDs. If a target is specified, Skype returns IDs of all calls that have been made between the current

and target user.

Errors

 ERROR 5 Search CALLS: invalid target

Characters that are not permitted were used in the target username. The username must have 6-22 characters and can contain only the

following symbols: {a-Z, 0-9-_,.}.

Version

Protocol 1

Example
-> SEARCH CALLS abc

<- CALLS 15, 16, 39

SEARCH ACTIVECALLS

Lists all calls visible on calltabs, including members of conference calls if the user is hosting a conference.

Syntax

-> SEARCH ACTIVECALLS

Response

<- CALLS [<id>[, <id>]*]

Returns a list of active call IDs.

Errors

 ERROR 3 SEARCH: unknown WHAT

ACTIVECALLS was misspelled.

Version

Protocol 1

Example
-> SEARCH ACTIVECALLS

<- CALLS 25, 56

SEARCH MISSEDCALLS

Syntax

-> SEARCH MISSEDCALLS

Response

<- CALLS [<id>[, <id>]*]

Returns a list ofmissed call IDs, calls in MISSED status.

Errors

 ERROR 6 SEARCH MISSEDCALLS: target not allowed

No target is allowed with SEARCH MISSEDCALLS.

Version

Protocol 1

Example
-> SEARCH MISSEDCALLS

<- CALLS 25, 56

SEARCH SMSS

All SMS messages that you have created in Skype remain stored in the system until they get removed with

[#MANAGING_SMS_MESSAGES_DELETING DELETE SMS] command.

The list of these SMS messages can be queried with SEARCH SMSS command:

Syntax:

-> SEARCH SMSS

<- SMSS <ID1>, <ID2>, <ID3> ..

Example:
-> SEARCH SMSS

<- SMSS 233

Refer to SMS object section for a list of SMS object properties.

Version

Added in API version 2.5
SEARCH MISSEDSMSS

Returns a list of IDs of received but unread SMS objects.

Syntax:

-> SEARCH MISSEDSMSS

<- SMSS <ID1>, <ID2>, <ID3> ..

Example:
-> SEARCH SMSS

<- SMSS 233

Refer to SMS object section for a list of SMS object properties.

Version

Added in API version 2.5
SEARCH VOICEMAILS

Returns a list of voicemail IDs.

Syntax:

-> SEARCH VOICEMAILS

<- VOICEMAILS [<id>[, <id>]*]

Errors

 ERROR 29 SEARCH VOICEMAILS: target not allowed

No target is allowed with SEARCH VOICEMAILS.

Version

Protocol 5

Example:
-> SEARCH VOICEMAILS

<- VOICEMAILS 65, 70, 71

SEARCH MISSEDVOICEMAILS

Returns a list of IDs of missed voicemails.

Syntax:

-> SEARCH MISSEDVOICEMAILS

<- VOICEMAILS [<id>[, <id>]*]

Errors

 ERROR 29 SEARCH MISSEDVOICEMAILS: target not allowed

No target is allowed with SEARCH MISSEDVOICEMAILS

Version

Protocol 6

Example:
-> SEARCH MISSEDVOICEMAILS

<- VOICEMAILS 65, 70, 71

SEARCH MESSAGES

Syntax

SEARCH MESSAGES [<target>]

Parameters

 <target> – username. It is optional to specify a target. If a target is specified, Skype searches the message history between the

current user and the target user.

Response

MESSAGES [<id>[, <id>]*]

Returns a list of message IDs. If a target is specified, Skype returns IDs of all messages that have been sent between the

current user and the target user.

Errors

 ERROR 5 SEARCH MESSAGES: invalid target

A character was used in the target username that is not permitted. The username must have 6-22 characters and can contain only the

following symbols: {a-Z, 0-9-_,.}.

Version

Protocol 1, deprecated in protocol 3

Notes

This search is deprecated in protocol 3, use the SEARCH CHATMESSAGES command instead.

Example
-> SEARCH MESSAGES abc

<- MESSAGES 123, 124

SEARCH MISSEDMESSAGES

Syntax

SEARCH MISSEDMESSAGES

Response

MESSAGES [<id>[, <id>]*]

Returns a list of message IDs.

Errors

 ERROR 29 SEARCH MISSEDMESSAGES: target not allowed

No target is allowed with the SEARCH MISSEDMESSAGES command.

Version

Protocol 1, deprecated in protocol 3

Notes

This search is deprecated in protocol 3. Use the SEARCH MISSEDCHATMESSAGES command instead.

Example
-> SEARCH MISSEDMESSAGES

<- MESSAGES 123, 124

SEARCH CHATS

Syntax

SEARCH CHATS

Response

CHATS [<chatname>[, <chatname>]*]

Returns a list of chat IDs.

Errors

 ERROR 107 target not allowed with CHATS

No target isallowed with the SEARCH CHATS command.

Version

Protocol 3

Example
-> SEARCH CHATS

<- CHATS #bitman/$jessy;eb06e65612353279, #bitman/$jdenton;9244e98f82d7d391

SEARCH ACTIVECHATS

Syntax

SEARCH ACTIVECHATS

Response

CHATS [<chatname>[, <chatname>]*]

Returns a list of chat IDs that are open in the window.

Errors

 ERROR 29 No target allowed

No target is allowed with SEARCH ACTIVECHATS .

Version

Protocol 5

Example
-> SEARCH ACTIVECHATS

<- CHATS #bitman/$jessy;eb06e65612353279, #bitman/$jdenton;9244e98f82d7d391

SEARCH MISSEDCHATS

Syntax

SEARCH MISSEDCHATS

Response

CHATS [<chatname>[, <chatname>]*]

Returns a list of chat IDs that include unread messages.

Errors

 ERROR 29 SEARCH MISSEDCHATS: target not allowed

Notarget is allowed with SEARCH MISSEDCHATS .

Version

Protocol 5

Example
-> SEARCH MISSEDCHATS

<- CHATS #bitman/$jessy;eb06e65612353279, #bitman/$jdenton;9244e98f82d7d391

SEARCH RECENTCHATS

Syntax

SEARCH RECENTCHATS

Response

CHATS [<chatname>[, <chatname>]*]

Returns a list of recent chat IDs.

Errors

 ERROR 29 SEARCH RECENTCHATS: target not allowed

Notarget is allowed with SEARCH RECENTCHATS .

Version

Protocol 5

Example
-> SEARCH RECENTCHATS

<- CHATS #bitman/$jessy;eb06e65612353279, #bitman/$jdenton;9244e98f82d7d391

SEARCH BOOKMARKEDCHATS

Syntax

SEARCH BOOKMARKEDCHATS

Response

CHATS [<chatname>[, <chatname>]*]

Returns a list of bookmarked chat IDs.

Errors

 ERROR 29 SEARCH BOOKMARKEDCHATS: target not allowed

Notarget is allowed with SEARCH BOOKMARKEDCHATS .

Version

Protocol 5

Example
-> SEARCH BOOKMARKEDCHATS

<- CHATS #bitman/$jessy;eb06e65612353279, #bitman/$jdenton;9244e98f82d7d391

SEARCH CHATMESSAGES

Syntax

SEARCH CHATMESSAGES [<username>]

Parameters

<username> – target username, optional. If a username is specified, only chatmessages from/to that target user are

returned.

Response

CHATMESSAGES [<id>[, <id>]*]

Returns a list of chat message IDs.

Errors

 ERROR 29 SEARCH CHATMESSAGES: Target not allowed

The target username contained a character that is not permitted. (Username must have 6-22 characters and can contain only the

following symbols: {a-Z, 0-9-_,.}.

Version

Protocol 3

Example
-> SEARCH CHATMESSAGES abc

<- CHATMESSAGES 60, 59

SEARCH MISSEDCHATMESSAGES

Syntax

SEARCH MISSEDCHATMESSAGES

Response

CHATMESSAGES [<id>[, <id>]*]

Returns a list of missed chat message IDs.

Errors

 ERROR 29 SEARCH MISSEDCHATMESSAGES: target not allowed

Notarget is allowed with SEARCH MISSEDCHATMESSAGES .

Version

Protocol 3

Example
-> SEARCH MISSEDCHATMESSAGES

<- CHATMESSAGES 61, 62

SEARCH USERSWAITINGMYAUTHORIZATION

List of users who are waiting for contact authorization.

Syntax:

-> SEARCH USERSWAITINGMYAUTHORIZATION

<- USERS [<skypename1>[, <skypename2>]*]

Errors

 ERROR 29 SEARCH USERSWAITINGMYAUTHORIZATION: target not allowed

Version

Protocol 5

Example:
-> SEARCH USERSWAITINGMYAUTHORIZATION

<- USERS tim, john, echo123

SEARCH GROUPS

The SEARCH GROUPS command returns comma-separated list of IDs of user’s contact groups.

Syntax:

-> SEARCH GROUPS [{ ALL | CUSTOM | HARDWIRED }]

<- GROUPS <id1>, <id2>, <id3>, ...

Example:
//--

// Getting a list of custom (user-made) groups

-> SEARCH GROUPS CUSTOM

<- GROUPS 3238, 3239, 3240, 3241, 3242, 3372

//--

// Getting group names from IDs goes like this:

-> GET GROUP 3240 DISPLAYNAME

<- GROUP 3240 DISPLAYNAME test

Version

Protocol 5

Errors
ERROR 561 - SEARCH GROUPS: invalid target

ERROR 562 - Invalid group id

ERROR 563 - Invalid group object

ERROR 564 - Invalid group property given

SEARCH FILETRANSFERS

Returns a list of all file transfer IDs. Refer to FILETRANSFER object for more details.

Syntax

-> SEARCH FILETRANSFERS

Response

<- FILETRANSFERS [<id>[, <id>]*]

Example:
-> SEARCH FILETRANSFERS

<- FILETRANSFERS 1343, 1314, 1263, 1249, 1241, 982, 544, 1086

Version

Protocol 7 (API version 3.0)
SEARCH ACTIVEFILETRANSFERS

Returns a list of currently active (ones that are nor COMPLETED, CANCELLED or FAILED) file transfer IDs.

Refer to FILETRANSFER object for more details.

Note that it is not necessary for remote users to accept the file transfer for it to become listed

inACTIVEFILETRANSFERS for both parties.

Syntax

-> SEARCH ACTIVEFILETRANSFERS

Response

<- FILETRANSFERS [<id>[, <id>]*]

Example:
-> SEARCH ACTIVEFILETRANSFERS

<- FILETRANSFERS 1411

-> GET FILETRANSFER 1411 STATUS

<- FILETRANSFER 1411 STATUS WAITING_FOR_ACCEPT

Version

Protocol 7 (API version 3.0)

Managing history

These commands are available to clear chat, voicemail, and call history.

Skype4Com example:

 CallHistory.pas

CLEAR CHATHISTORY

This command clears chat history. NB! This command does not remove chat entries from the Skype history tab. Instead, it

clears chatmessage histories within chats.

Syntax

-> CLEAR CHATHISTORY

<- CLEAR CHATHISTORY
CLEAR VOICEMAILHISTORY

Clears voicemail entries from the history tab in Skype UI.

Syntax:

-> CLEAR VOICEMAILHISTORY

<- CLEAR VOICEMAILHISTORY

Example:
-> CLEAR VOICEMAILHISTORY

<- CLEAR VOICEMAILHISTORY

<- VOICEMAIL 3398 STATUS DELETING

CLEAR CALLHISTORY

Clears call entries from the history tab in Skype UI.

Syntax:

-> CLEAR CALLHISTORY <ALL|MISSED|INCOMING|OUTGOING> [skypename]

<- CLEAR CALLHISTORY <ALL|MISSED|INCOMING|OUTGOING> [skypename]

Example:
//---

// Removes incoming calls from user test2 from Skype history tab

-> CLEAR CALLHISTORY INCOMING test2

<- CLEAR CALLHISTORY INCOMING test2

Controlling Skype user interface

This section lists the commands used to control the Skype user interface.

FOCUS

The FOCUS brings the Skype window into focus on screen (on top).

Syntax:

-> FOCUS

<- FOCUS

See also SET WINDOWSTATE command for more recent and universal version of the same functionality.

Note also that from version 3.6 the FOCUS command produces additional window state notification message in following

format:

<- WINDOWSTATE NORMAL|MINIMIZED|MAXIMIZED|HIDDEN

Version

Protocol 1
MINIMIZE

This command minimizes the main Skype window into the system tray.

Syntax:

-> MINIMIZE

<- MINIMIZE

*

See also SET WINDOWSTATE command for more recent and universal version of the same functionality.

Note also that from version 3.6 the MINIMIZE command produces additional window state notification message in

following format:

<- WINDOWSTATE NORMAL|MINIMIZED|MAXIMIZED|HIDDEN

Version

Skype for Windows 1.3

Notes

This command does not minimize other Skype windows, such as chat or filetransfer.
GET WINDOWSTATE

Returns the current state of the Skype main window. The WINDOWSTATE property is read-write, so you can cause the

Skype main window to minimize to system tray, maximize, etc. with corresponding SET WINDOWSTATE command.

Syntax:

@→ GET WINDOWSTATE @

<- WINDOWSTATE NORMAL|MINIMIZED|MAXIMIZED|HIDDEN

Example:
-> #1 GET WINDOWSTATE

<- #1 WINDOWSTATE NORMAL

-> #2 SET WINDOWSTATE MINIMIZED

<- #2 WINDOWSTATE MINIMIZED

<- WINDOWSTATE MINIMIZED

-> #3 SET WINDOWSTATE MAXIMIZED

<- #3 WINDOWSTATE MAXIMIZED

<- WINDOWSTATE MAXIMIZED

<- WINDOWSTATE MINIMIZED

-> #4 SET WINDOWSTATE NORMAL

<- #4 WINDOWSTATE NORMAL

<- WINDOWSTATE NORMAL

Note that you also get these WINDOWSTATE notification messages when the window state was altered via UI, i.e. when a

user clicks on minimize button in the Skype window, corresponding APInotification event is generated.

This is also the reason SET WINDOWSTATE command receives two reply notifications. One is sent as direct reply to the

actual API command, the second one is generated by the change in Skype window state.

NB! As seen in the example above, of those two notification events, in response to SET WINDOWSTATE only one comes

with command identifier.

Version:

Windows version 3.6

SET WINDOWSTATE

This command causes the Skype Main window to change state. Note that this command only applies to

Skype main window. Other Skype windows, such as chat windows or file trasfer windows are unaffected by this

command.

Syntax:

@→ SET WINDOWSTATE NORMAL|MINIMIZED|MAXIMIZED|HIDDEN @

<- WINDOWSTATE NORMAL|MINIMIZED|MAXIMIZED|HIDDEN

<- WINDOWSTATE NORMAL|MINIMIZED|MAXIMIZED|HIDDEN

Note this command generates two reply notifications. If you are using this command together with command identifiers,

then it might be important to know that only the first one of those notifications comes back with command ID (see

example below).

Parameters:

 NORMAL – resets Skype main window to previous manually adjusted size and position.

 MINIMIZED – minimizes Skype window to taskbar – NB! This does not put Skype to system tray, to minimize Skype to system tray

use HIDDEN parameter.

 MAXIMIZED – maximizes Skype main window all over the current desktop.

 HIDDEN – minimizes Skype main window to system tray.

Example:
-> #1 GET WINDOWSTATE

<- #1 WINDOWSTATE NORMAL

-> #2 SET WINDOWSTATE MINIMIZED

<- #2 WINDOWSTATE MINIMIZED

<- WINDOWSTATE MINIMIZED

-> #3 SET WINDOWSTATE MAXIMIZED

<- #3 WINDOWSTATE MAXIMIZED

<- WINDOWSTATE MAXIMIZED

<- WINDOWSTATE MINIMIZED

-> #4 SET WINDOWSTATE NORMAL

<- #4 WINDOWSTATE NORMAL

<- WINDOWSTATE NORMAL

Version:

*Added in API version 3.6
OPEN ADDAFRIEND

This command opens the Add a Contact window. NB! Don’t miss that “A” between “ADD” and “FRIEND”.

Syntax:

-> OPEN ADDAFRIEND [<username>]

<- OPEN ADDAFRIEND [<username>]

Parameters

<username> – target username is optional. If a username is specified, the window is prefilled with it.

Errors

ERROR 69 OPEN: invalid WHAT

Open target is missing or misspelled

Version

Skype for Windows 1.0
OPEN IM

This command opens the chat window with prefilled message.

Syntax:

-> OPEN IM <username> [<message>]

Response:

In response, open chat command feedback is generated, followed by with echoing back the original command (see

example below).

Parameters

 <username> – contact username to whom to send the message.

 <message> – optional message body prefilled into the window. Note that this message is not actually sent – just pasted into chat

window’s input line.

Errors

 ERROR 69 OPEN: invalid WHAT

Open target is missing or misspelled

 ERROR 70 Invalid user handle

Username is missing or contains not permitted symbols

Notes

The protocol 5 chat management commands and Skype for Windows 1.3 OPEN CHAT command are preferable to

the OPEN IM command.

Example:
-> OPEN IM echo123 this is a prefilled chatmessage

<- CHAT #anappo/$echo123;ebe5311cdd203657 NAME

#anappo/$echo123;ebe5311cdd203657

<- CHAT #anappo/$echo123;ebe5311cdd203657 ACTIVITY_TIMESTAMP 0

<- MESSAGE 1259 STATUS SENDING

<- CHAT #anappo/$echo123;ebe5311cdd203657 TYPE DIALOG

<- CHATMEMBER 1257 ROLE USER

<- CHAT #anappo/$echo123;ebe5311cdd203657 MYROLE USER

<- CHAT #anappo/$echo123;ebe5311cdd203657 ACTIVEMEMBERS anappo

<- CHAT #anappo/$echo123;ebe5311cdd203657 MYSTATUS SUBSCRIBED

<- CHAT #anappo/$echo123;ebe5311cdd203657 STATUS DIALOG

<- CHAT #anappo/$echo123;ebe5311cdd203657 TIMESTAMP 1178793154

<- CHAT #anappo/$echo123;ebe5311cdd203657 DIALOG_PARTNER echo123

<- CHAT #anappo/$echo123;ebe5311cdd203657 MEMBERS anappo echo123

<- CHAT #anappo/$echo123;ebe5311cdd203657 FRIENDLYNAME Echo / Sound Test

Service

<- OPEN IM echo123 this is a prefilled chatmessage

Version

Skype for Windows 1.0
OPEN CHAT

Opens chat window for existing CHAT object.

Syntax:

-> OPEN CHAT <chat_id>

<- OPEN CHAT <chat_id>

Parameters

<chat_id> – existing chat identifier (Refer to SEARCH CHATS command).

Errors

 ERROR 69 invalid open what

Open target is missing or misspelled

 ERROR 105 Invalid chat name

Chat id is missing or chat with this id doesn’t exist.

Version

Skype for Windows 1.3

Example:
-> OPEN CHAT #test/$echo123;52c2750d8686c10c

<- OPEN CHAT #test/$echo123;52c2750d8686c10c

NB! From version 3.6 and later, opening chat windows (both from API and manually via UI) generate additional chat

window open and close notfication messages. Refer to the Chat notifications section for more information.
OPEN FILETRANSFER

Syntax:

-> OPEN FILETRANSFER <username>[, <username>]*[IN <folder>]

<- OPEN FILETRANSFER <username>[, <username>]*[IN <folder>]

Parameters

 <username> – list of usernames to transfer file to;

 <folder> – optional, filesystem folder for file selection window. If not specified, the file transfer window opens in the default

directory.

Errors

 ERROR 69 invalid open what

Open target is missing or misspelled

 ERROR 108 user not contact

Command is allowed for authorized contacts only

 ERROR 109 directory doesn't exist

Given folder does not exist or user has no access to it

Example:
-> OPEN FILETRANSFER echo123 IN C:\temp

<- ERROR 108 user not contact

-> OPEN FILETRANSFER myfriend IN C:\temp

<- OPEN FILETRANSFER myfriend IN C:\temp

Version

Skype for Windows 1.3
OPEN LIVETAB

Opens Live tab in Skype UI.

Syntax:

-> OPEN LIVETAB

<- OPEN LIVETAB

Version

API version 3.2 (protocol 7)
OPEN VIDEOTEST

This command opens the Video test window to test if video is working. See OPEN VIDEOTESTcommand reference for

details.
OPEN VOICEMAIL

This command brings the callhistory tab into focus and starts playing a voicemail.

See OPENVOICEMAIL command reference for details.
OPEN PROFILE

This command opens the profile window for the current user.

Syntax:

-> OPEN PROFILE

<- OPEN PROFILE

Errors

 ERROR 69 invalid open what

Open target is missing or misspelled

Version

Skype for Windows 1.4
OPEN USERINFO

This command opens the profile window for a named Skype contact. Note that when the contact given in the parameter

does not exist, a profile window is still opened, with an option to add<skypename> to user’s contact list. Therefore, you

cannot rely on feedback of this command to determine whether <skypename> is present in your contact list.

Syntax:

-> OPEN USERINFO <skypename>

<- OPEN USERINFO <skypename>

Parameters

<skypename> – Skypename of contact

Errors

 ERROR invalid skypename

 ERROR 69 invalid open what

 Open target is missing or misspelled

Version

Skype for Windows 1.4
OPEN CONFERENCE

This command opens the create conference window. Note that this command does not allow parameters.

Syntax:

-> OPEN CONFERENCE

<- OPEN CONFERENCE

Errors

 ERROR 69 invalid open what

 Open target is missing or misspelled

Version

Skype for Windows 1.4
OPEN SEARCH

This command opens the Skype user search window. Note that this command does not allow parameters.

Syntax:

-> OPEN SEARCH

<- OPEN SEARCH

Errors

 ERROR 69 invalid open what

 Open target is missing or misspelled

Version

Skype for Windows 1.4
OPEN OPTIONS

This command opens the options configuration window.

Syntax:

-> OPEN OPTIONS <page>

<- OPEN OPTIONS <page>

Parameters

<page>, possible values:

 general

 privacy

 notifications

 soundalerts

 sounddevices

 hotkeys

 connection

 voicemail

 callforward

 video

 advanced

Note that no error feedback is generated that when an erroneous page name is passed in the<page> parameter – the

command will still be echoed back, it simply does nothing.

*

Errors

 ERROR 69 invalid open what

 Open target is missing or misspelled

Version

Skype for Windows 1.4

Note: OPEN OPTIONS video parameter was introduced in Skype for Windows 2.0.
OPEN CALLHISTORY

This command opens and sets the focus to the call history tab in the main Skype window.

Syntax:

-> OPEN CALLHISTORY

<- OPEN CALLHISTORY

Errors

 ERROR 69 invalid open what Open target is missing or misspelled

Version

Skype for Windows 1.4

As of version 2.0.0.12, this command also works on Linux.

OPEN CONTACTS

This command opens and sets the focus to the contacts tab in the main Skype window.

Syntax:

-> OPEN CONTACTS

<- OPEN CONTACTS

Errors

 ERROR 69 invalid open what

 Open target is missing or misspelled

Version

Skype for Windows 1.4

As of version 2.0.0.12, this command also works on Linux.

OPEN DIALPAD

This command opens and sets the focus to the dialpad tab in the main Skype window.

Syntax:

-> OPEN DIALPAD

<- OPEN DIALPAD

Errors

 ERROR 69 invalid open what

 Open target is missing or misspelled

Version

Skype for Windows 1.4
OPEN SENDCONTACTS

This command opens the send contacts window.

Syntax:

-> OPEN SENDCONTACTS <username> [<username2> <username3>]

<- OPEN SENDCONTACTS <username> [<username2> <username3>]

Parameters

Whitespace separated list of Skype usernames of recepients of the contact list.

Errors

 ERROR 69 invalid open what

 Open target is missing or misspelled

 ERROR 4 OPEN Empty target not allowed – missing username parameter(s)

Version

Skype for Windows 1.4
OPEN BLOCKEDUSERS

This command opens the blocked users tab of the Options window.

Syntax:

-> OPEN BLOCKEDUSERS

<- OPEN BLOCKEDUSERS

Errors

 ERROR 69 invalid open what

 Open target is missing or misspelled

Version

Skype for Windows 1.4
OPEN IMPORTCONTACTS

This command opens the import contacts wizard.

Syntax:

-> OPEN IMPORTCONTACTS

<- OPEN IMPORTCONTACTS

Errors

 ERROR 69 invalid open what

 Open target is missing or misspelled

Version

Skype for Windows 1.4
OPEN GETTINGSTARTED

This command opens the getting started wizard.

Syntax:

-> OPEN GETTINGSTARTED

<- OPEN GETTINGSTARTED

Errors

 ERROR 69 invalid open what

 Open target is missing or misspelled

Version

Skype for Windows 1.4
OPEN AUTHORIZATION

This command opens the authorization request window for a given user.

Syntax:

-> OPEN AUTHORIZATION <skypename>

<- OPEN AUTHORIZATION <skypename>

Parameters

skypename of the user whose authorization is requested.

Errors

 ERROR 69 invalid open what

 Open target is missing or misspelled

 ERROR 117 OPEN User already authorized

Version

Skype for Windows 1.4
BTN_PRESSED and BTN_RELEASED

BTN_PRESSED command does not actually do anything useful. BTN_RELEASED command can be used to simulate

keyboard events in Skype UI.

Syntax:

-> BTN_PRESSED <key>

<- BTN_PRESSED <key>

-> BTN_RELEASED <key>

<- BTN_RELEASED <key>

Parameters:

Parameter can have one the of following values:

*

{0...9 | A...Z | # | * | + | UP | DOWN | YES | NO | SKYPE | PAGEUP | PAGEDOWN}

Note that during an active call, when either Call or Call Phone tabs are focused, BTN_RELEASEDcommand with

parameter that is a valid DTMF code, will cause that DTMF code to be sent to the remote party of the call.

Version

Protocol 5
GET CONTACTS FOCUSED

This command returns the skypename of a contact currently focused in Skype UI. Note that when more than one contacts

are selected in SKype UI, this command only returns only one contact (the last one focused).

Syntax:

-> GET CONTACTS_FOCUSED

<- CONTACTS FOCUSED <skypename>

Note that the <- CONTACTS FOCUSED response has the same syntax as automatic focus notifications.

Version

Protocol 7 (API version 3.1)
GET/SET UI_LANGUAGE

Following two commands are available to change and retrieve current interface language settings:

-> GET UI_LANGUAGE

-> SET UI_LANGUAGE <iso2>

Example:
-> GET UI_LANGUAGE

<- UI_LANGUAGE en

-> SET UI_LANGUAGE en

<- UI_LANGUAGE en

<- UI_LANGUAGE en

<- UI_LANGUAGE en

Note that the <- UI_LANGUAGE <iso2> notification message is also generated by Skype when language settings get

changed manually from the user interface.

NB! When the UI language is set via custom language file, GET UI_LANGUAGE will return “xx” (used to return “en” in

versions prior to 3.5).

Version

Protocol 6 (API version 3.0)
GET/SET WALLPAPERS

Following two commands are available to change and retrieve current interface wallpapers:

-> GET WALLPAPER

<- WALLPAPER [<filename>]

-> SET WALLPAPER [<filename>]

<- WALLPAPER [<filename>]

Note that the filename parameter must contain full path as well as file extension of the wallpaper file. The filename

parameter must not be enclosed in quotes.

When SET WALLPAPER command is given without a parameter, it will remove current wallpaper.

Supported picture formats are PNG, JPG, and BMP

Example:
//--

// Setting user interface background

-> SET WALLPAPER C:\Stuff\test.bmp

<- WALLPAPER C:\Stuff\test.bmp

<- WALLPAPER C:\Stuff\test.bmp

//--

// Trying non-existing file..

-> SET WALLPAPER c:\Stuff\wrongfile.bmp

<- ERROR 111 SET File not found

//--

// Retrieving background filename

-> GET WALLPAPER C:\Stuff\test.bmp

<- WALLPAPER C:\Stuff\test.bmp

//--

// Clearing background filename

-> SET WALLPAPER

<- WALLPAPER

<- WALLPAPER

Note that the <- WALLPAPER <filename> notification message is also generated by Skype when the wallpaper is

changed manually from the user interface.

Version

Protocol 6 (API version 3.0)
SILENT_MODE

While in silent mode, the Skype client will no longer send out any visual notifications of calls, chat messages or other

Skype events, although you will still hear ringtone when someone is calling you.

Syntax:

-> SET SILENT_MODE {ON|OFF}

<- SILENT_MODE {ON|OFF}

Example:
-> SET SILENT_MODE ON

<- SILENT_MODE ON

-> SET SILENT_MODE OFF

<- SILENT_MODE OFF

Silent mode can also be turned off by doubleclicking on the Skype icon in the System Tray. NB! Using ‘Open Skype’

command from the System Tray local menu will not turn Silent Mode off. Only double-click on the icon does.

Note that when a user manually turns off silent mode from System Tray, SILENT_MODE OFFnotification is sent out by

Skype.

Note that switching silent mode ON will cause the Skype Client to pop a confirmation message, displaying the name of

the application from which the silent mode request originated. This confirmation message will re-pop every time a third

party application tries to enter silent mode.

Version

Protocol 6 (Skype API 2.6)

Custom Menus and Events

In API version 3.0, it is possible to add your own menu items under !DoMore sections of Skype UI menus. When such

menu items get clicked on by a user, notification events are sent back to application from which the menu was created. A

companion functionality to this are Skype Alert Events – clickable notification event entries in Skype UI that you can add

and remove from your own code.
Custom Menu Items

The custom menu interface provides commands, notifications and events required to create and manage custom menu

entries in the Skype client. Custom menu items are automatically removed when the API client that created them is

disconnected.

When a custom menu item is clicked by the user, notification event to the API client is fired. EachAPI client has its own

specific menu items and each client only receives notifications from menu items it creates.

The menu items can appear in Do More sections of various menus across the Skype user interface. Which particular Do

More menu receives the menu item is controlled by the CONTEXT parameter of the CREATE MENU_ITEM command.

Note that custom menus are currently only supported by Windows client.

Version

Protocol 6 (API version 3.0)
CREATE MENU_ITEM

Creates a custom menu item in one of the Do More menus of the Skype interface.

Syntax:

CREATE MENU_ITEM <id> CONTEXT <context> CAPTION <caption> [HINT <hint>]

*

[ICON <icon_path>] [ENABLED true|false] [ENABLE_MULTIPLE_CONTACTS true|false]

[CONTACT_TYPE_FILTER skype|skypeout|all]

Example:
-> CREATE MENU_ITEM test01 CONTEXT contact CAPTION "TEST 01" ENABLED true

<- MENU_ITEM test01 CREATED

//---

// Following menu item will only be enabled for SkypeOut contacts

-> CREATE MENU_ITEM test02 CONTEXT contact CAPTION "TEST FOR SKYPEOUT"

CONTACT_TYPE_FILTER skypeout

<- MENU_ITEM test02 CREATED

Parameters of the CREATE MENU_ITEM command:

 ID – Unique alphanumeric identifier, must start with a letter.

 CONTEXT – controls in which one of the Do More menus the menu item will appear. Valid values are:

o CHAT – Do More button at the upper part of a Chat window. Note that the Do More button is disabled when there are more than

two chat participants.

o CALL – Do More menu at the upper part of the Call tab.

o MYSELF – Do More menu from the Personalize button on user’s moodmessage tab.

o TOOLS – Do More sub-menu under the Tools menu.

o CONTACT – Do More sub menu from contact menu that can be opened by right-clicking on a contact. Note the Do More menu is

disabled when more that one contacts are selected. The CONTACT key has three sub-keys:

 SKYPE – menu item will be enabled only for contacts with Skype accounts. The menu item will be grayed out for SkypeOut

contacts.

 SKYPEOUT – menu item will be enabled only for SkypeOut contacts. The menu item will be grayed out for skypename

contacts.

 ALL – menu item will be enabled for all sorts of contacts, in which case you can basically omit this key altogether.

 CAPTION – Menu item text. Max 32 characters, enclose in quotes if the text contains whitespaces.

 HINT – Optional and currently unused.

 ICON – The directory path of the .PNG file of the menu icon. Maximum size of the icon is 32 × 32 pixels. Enclose in quotes. This

parameter is optional.

 ENABLED – true | false – controls if the menu item is in enabled state. Menu item in disabled state remain visible in the menu but is

grayed out and unclickable.

 ENABLE_MULTIPLE_CONTACTS – Optional and currently unused.

Version

Protocol 6 (API version 3.0)
DELETE MENU_ITEM

Removes a custom menu item. Note that custom menu items are removed automatically when the client application that

created them is disconnected.

Syntax:

DELETE MENU_ITEM <id>

Example:
-> CREATE MENU_ITEM test01 CONTEXT contact CAPTION "TEST 01" ENABLED true

<- MENU_ITEM test01 CREATED

-> DELETE MENU_ITEM test01

<- DELETE MENU_ITEM test01

Version

Protocol 6 (API version 3.0)
SET MENU_ITEM

Syntax:

SET MENU_ITEM <property> <value>

This command enables you to change following properties of a custom menu item:

 CAPTION

 HINT

 ENABLED

Example:
-> CREATE MENU_ITEM test01 CONTEXT contact CAPTION "TEST 01" ENABLED true

<- MENU_ITEM test01 CREATED

-> SET MENU_ITEM test01 CAPTION "changed caption"

<- MENU_ITEM test01 CAPTION "changed caption"

Note that you can only change MENU_ITEM properties one at a time. To change both CAPTIONand ENABLED properties

of a MENU_ITEM, you will need two SET MENU_ITEM commands.

Version

Protocol 6 (API version 3.0)
MENU_ITEM click event

MENU_ITEM events are generated when a user clicks on a custom menu item. Note that each APIclient

receives MENU_ITEM events only for menu items created from within their own code.

The message format is as follows:

<- MENU_ITEM <menu_id> CLICKED [<user_id>] CONTEXT <context> [CONTEXT_ID

<context_id>]

 The parameter is always returned as the ID of the menu item that was clicked.

 is only returned if the CONTEXT was either CONTACT, CALL or CHAT and contains the Skype name of the contact.

 is always returned as CONTEXT of the menu item.

 is only returned if the context was either CALL or CHAT. In case of a CALL, returns CALL ID, in case of aCHAT, it returns CHAT

ID.

Example:
//---

// Context = MYSELF

-> CREATE MENU_ITEM test05 CONTEXT MYSELF CAPTION "TEST" ENABLED true

// -- clicking --

<- MENU_ITEM test05 CLICKED CONTEXT myself

//---

// Context = TOOLS

-> CREATE MENU_ITEM test06 CONTEXT TOOLS CAPTION "TEST" ENABLED true

// -- clicking --

<- MENU_ITEM test06 CLICKED CONTEXT tools

//---

// Context = CONTACT

-> CREATE MENU_ITEM test07 CONTEXT CONTACT CAPTION "TEST" ENABLED true

// -- clicking --

<- MENU_ITEM test07 CLICKED echo123 CONTEXT contact

//---

// Context = CALL

-> CREATE MENU_ITEM test03 CONTEXT CALL CAPTION "TEST" ENABLED true

// -- clicking --

<- MENU_ITEM test03 CLICKED echo123 CONTEXT call CONTEXT_ID 879

//---

// Context = CHAT

-> CREATE MENU_ITEM test04 CONTEXT CHAT CAPTION "TEST" ENABLED true

// -- clicking --

<- MENU_ITEM test04 CLICKED echo123 CONTEXT chat CONTEXT_ID

#tester/$echo123;559a71c0ef9d758b

Version

Protocol 6 (API version 3.0)
Skype Alert Events

Events, when created, appear in Skype UI on the right side of the mood message / profile panel as well as System Tray

when Skype is in minimized state. Custom events can be created with the following API command:

-> CREATE EVENT <id> CAPTION <text> HINT <text>

Parameters:

 EVENT <id> – unique identifier, alphanumeric and must start with a letter.

 CAPTION <text> – displayed name of the menu item, enclosed in quotes if it contains whitespaces.

 HINT <text> – free-form text, enclosed in quotes if it contains whitespaces.

Custom events will be displayed on events tab as “Plugin messages”. The CAPTION of the event will be displayed as a

clickable link. Clicking on such link will generate a notification message in following format:

<- EVENT <id> CLICKED

Note that only the API client who created that particular event will receive such message.

The text given in HINT parameter will be displayed as hint, on mouse hover on the link.

Events remain in plugin message list as long as the API client that created them gets disconnected or are deleted from

within API client code.

To delete events:

-> DELETE EVENT <id>

Example:
//--

// Let there be a new event:

-> CREATE EVENT test1 CAPTION "Test message" HINT "Test message hint"

<- EVENT test1 CREATED

//--

// At this point a red flag icon and "1 new event message" should appear

// on the mood message panel. Click on it, then click on "Test message".

// Following event is sent to your API client:

<- EVENT test1 CLICKED

//--

// Clearing up the mess from event list

-> delete event test1

<- DELETE EVENT test1

Version

Protocol 6 (API version 3.0)

Application to application commands

The AP2AP feature in Skype allows two API clients to exchange information without the communication being visible on

the client. Application to application communication has the following characteristics:

 From Skype version 3.1.0.150 it is no longer required for users to be in each other’s contact list to be able to establish AP2AP

connections. The only requirement for AP2AP connections is that both users have to be online.

 From API version 3.0, you can establish AP2AP connections between several instances of Skype that are logged in with the same

skypename.

 Connections are only attempted to connectable users at CONNECT.

 Connections are established only when there is a matching application on the other side.

 When connection is dropped by one of the parties, all undelivered (stream) data will be lost. This is typically a problem when

connection to remote aplication is dropped by a stream sender before receiver has acknowledged that it has received entire stream.

 The application name is limited to 32 bytes.

 Idle connections are dropped in a specific amount of time (typically 8 minutes).

 When connection is relayed, throttling is engaged.

 If the other party is logged in to multiple Skype instances, a stream for each instance is created.

 The stream write provides reliable transmission to deliver a large amount of data.

 The maximum amount of write to a stream can be 0xFFFF bytes long.

 Any character except 0×00 is allowed in a message.

 Datagrams are unreliable packets sent over a network (usually translates to UDP).

 The maximum size of datagrams is 1400 bytes.

 There is no guarantee that datagrams will be delivered.

Note: When connected to another user using application to application messaging, a user cannot install anything on the

remote user’s client without the express permission of the remote user.

Note on AP2AP streams:

With Skype4Com library versions prior to 1.0.28, re-entrant event handlers caused stream packets to be retrieved from

receiving side in incorrect order. If you experience problems with packet order (and you are using Skype4Com library),

make sure you upgrade it to version 1.0.28.

Another note on Skype4Com library:

Binary data transfers via ap2ap functionality of Skype4Com library can sometimes lead to data getting partially scrambled.

To make sure your binary data is transmitted properly, we strongly suggest that you use base64 encoding to convert your

data to strings before passing those strings to Skype4Com IApplication.!SendDatagram and IApplicationStream.Write

methods.

The reason for this phenomenon is that due to how string parameters are handled when communicating with ActiveX

objects, all Skype API commands that are passed to or retrieved from the Skype client by Skype4Com library are passed

through UTF-8 encoding routine. This includes commands dealing with application to application datagrams and stream

writes/reads. ThoseUTF-8 encoding routines occasionally produce different results, depending on additional language

packs a user has installed in Windows.

For code example on base64 encoding/decoding algorithms, refer to A2AStreams.pas example linked below.

Read an [#COMMAND_AP2AP_EXAMPLE application to application example] to get you started.

Skype4Com example:

 A2AChat.pas

 A2AStreams.pas

AP2AP CREATE

This command registers a new application object with Skype. Application name cannot contain whitespaces.

Syntax:

CREATE APPLICATION <appname>

Response

If successful, the command is echoed back

Parameters:

<appname> : An arbitrary name to identify the application that will be exchanging data

Errors

 ERROR 536 CREATE: no object or type given

 ERROR 537 CREATE: Unknown object type given

 ERROR 540 CREATE APPLICATION: Missing or invalid name

 ERROR 541 APPLICATION: operation failed - in case an application with this name already

exists

Version

 Protocol 5

 Skype for Windows 1.4

AP2AP CONNECT

This command creates a stream from the application to another Skype user’s instance of the same application.

Syntax:

ALTER APPLICATION <appname> CONNECT <skypename>

Response:

If successful, the command is echoed back

Example 1: no matching application on the other side

-> #ID1 alter application test connect testuser

<- #ID1 ALTER APPLICATION test CONNECT testuser

<- APPLICATION test CONNECTING testuser

<- APPLICATION test CONNECTING

Note that only the initial feedback notification is echoed back with command ID.

Example 2: Matching application on remote was found

//---

// From initiator perspective

-> #ID1 alter application test connect anappo2

<- #ID1 ALTER APPLICATION test CONNECT anappo2

<- APPLICATION test CONNECTING anappo2

<- APPLICATION test CONNECTING

<- APPLICATION test STREAMS anappo2:1

//---

// From remote perspective

<- APPLICATION test STREAMS anappo:1

Parameters:

 <appname> : An arbitary name to identify the application that will be exchanging data

 <skypename> : The user to connect to this application

Errors:

 ERROR 546 ALTER APPLICATION: Missing or invalid action

 ERROR 547 ALTER APPLICATION CONNECT: Invalid user handle

Version:

 Protocol 5

 Skype for Windows 1.4

Note:

If the user identified by <skypename> is logged in from multiple locations, a stream will be created to each location.
AP2AP WRITE

This command writes text into the application stream identified by the destination user’s Skypename and stream ID.

Syntax

ALTER APPLICATION <appname> WRITE <skypename>:<id> <text>

Response

If successful, the command is echoed back

Note: There is a bug in Skype 1.4 where, following an application WRITE event, Skype reports that the number of bytes

sent is two characters greater than that which is actually written.

Parameters

 <appname> : An arbitary name to identify the application that will be exchanging data

 <skypename> : The name of the skype contact to whom the message will be sent

 <id> : The numeric identifier for the skype instance to which the message will be sent

 <text> : The text to send

Errors

 ERROR 546 ALTER APPLICATION : Missing or invalid action

 ERROR 550 ALTER APPLICATION READ: Missing or Invalid stream identifier

Version

 Protocol 5

 Skype for Windows 1.4

Example
//Send "Hello world!" to user "testtest20" stream "1" (application "exe")

-> ALTER APPLICATION exe WRITE testtest20:1 Hello world!

<- ALTER APPLICATION exe WRITE testtest20:1

// The message has been queued for sending, message length is reported back

<- APPLICATION exe SENDING testtest20:1 14

// The message has been sent -- note missing stream ID from the end of

response

<- APPLICATION exe SENDING

-> ALTER APPLICATION exe WRITE testtest20:1 1234567890

<- ALTER APPLICATION exe WRITE testtest20:1

<- APPLICATION exe SENDING testtest20:1 12

<- APPLICATION exe SENDING

AP2AP DATAGRAM

This command sends a datagram to the application stream.

Syntax:

ALTER APPLICATION <appname> DATAGRAM <skypename>:<id> <text>

Parameters

 <appname> : An arbitrary name to identify the application that will be exchanging data

 <skypename> : skypename of the remote party

 <id> : stream ID

 <text> : datagram content (0×00 is not allowed, so to use this for binary transfers you need to convert the data to remove nulls,

using base64 or base128 for example).

Example:
//--

// Creating and connecting application

// (from sender perspective)

-> CREATE APPLICATION test

<- CREATE APPLICATION test

-> ALTER APPLICATION test CONNECT anappo

<- ALTER APPLICATION test CONNECT anappo

<- APPLICATION test CONNECTING anappo

//--

// Note that a STREAMS event notification is

// generated automatically upon connect.

<- APPLICATION test STREAMS anappo:1

//--

// Sending datagram

-> ALTER APPLICATION test DATAGRAM anappo:1 BBBBBBBBBBBBBB

<- ALTER APPLICATION test DATAGRAM anappo:1

//--

// Following notification contains the number of

// characters in datagram

<- APPLICATION test SENDING anappo:1=14

<- APPLICATION test SENDING

//--

// Same thing from receiver perspective

-> CREATE APPLICATION test

<- CREATE APPLICATION test

<- APPLICATION test STREAMS anappo2:1

//--

// Note that receiver does not get a separate notification

// with size of received datagram.

<- APPLICATION test DATAGRAM anappo2:1 BBBBBBBBBBBBBB

Errors

 ERROR 546 ALTER APPLICATION : Missing or invalid action

 ERROR 551 ALTER APPLICATION DATAGRAM: Missing or invalid stream identifier

Version

 Protocol 5

 Skype for Windows 1.4

AP2AP READ

This command reads data from an application stream.

Syntax

ALTER APPLICATION <appname> READ <skypename>:<id>

Response

If successful, the command is echoed back

Parameters

 <appname> : An arbitrary name to identify the application that will be exchanging data

 <skypename> : skypename of the remote party

 <id> : stream ID

Example:
//--

// Sender

-> CREATE APPLICATION test

<- CREATE APPLICATION test

-> ALTER APPLICATION test CONNECT anappo

<- ALTER APPLICATION test CONNECT anappo

<- APPLICATION test CONNECTING anappo

<- APPLICATION test CONNECTING

<- APPLICATION test STREAMS anappo:1

-> ALTER APPLICATION test WRITE anappo:1 AAAAAA

<- ALTER APPLICATION test WRITE anappo:1

<- APPLICATION test SENDING anappo:1=8

<- APPLICATION test SENDING

//--

// Receiver

-> CREATE APPLICATION test

<- CREATE APPLICATION test

//--

// Streams notification we received on remote connect

<- APPLICATION test STREAMS anappo2:1

//--

// Packet notification message including packet size

<- APPLICATION test RECEIVED anappo2:1=6

//--

// Reading the packet

-> ALTER APPLICATION test READ anappo2:1

<- ALTER APPLICATION test READ anappo2:1 AAAAAA

<- APPLICATION test RECEIVED

Errors:

 ERROR 546 ALTER APPLICATION : Missing or invalid action

 ERROR 550 ALTER APPLICATION READ: Missing or invalid stream identifier

Version

 Protocol 5

 Skype for Windows 1.4

AP2AP DISCONNECT

This command disconnects a user stream from an application.

Syntax

ALTER APPLICATION <appname> DISCONNECT <skypname>:<id>

Response

If successful, the command is echoed back

Parameters

 <appname> : An arbitrary name to identify the application that will be exchanging data

 <skypename>:<id> : The user and stream to disconnect

Example:
//---

// From initiator perspective

-> #ID2 alter application test disconnect anappo2:1

<- #ID2 ALTER APPLICATION test DISCONNECT anappo2:1

<- APPLICATION test STREAMS

//---

// From remote perspective

<- APPLICATION test STREAMS

Note that if you use re-connect to the same remote user after disconnecting, the part of the streams notification will

increment itself.

-> ALTER APPLICATION test CONNECT anappo2

<- ALTER APPLICATION test CONNECT anappo2

<- APPLICATION test CONNECTING anappo2

<- APPLICATION test CONNECTING

<- APPLICATION test STREAMS anappo2:2

Errors:

 ERROR 546 ALTER APPLICATION : Missing or invalid action

 ERROR 548 ALTER APPLICATION DISCONNECT: Invalid stream identifier

Version

 Protocol 5

 Skype for Windows 1.4

AP2AP DELETE

This command deletes an application and drops all connections to it.

Syntax

DELETE APPLICATION <appname>

Response

If successful, the command is echoed back

Parameters

<appname> : The name of the application to be deleted

NB! If your application had open connections to remote users, these users will not receive notifications when you delete

that application.

Errors:

 ERROR 538 DELETE: no object or type given

 ERROR 539 DELETE: Unknown object type given

 ERROR 542 DELETE APPLICATION : missing or invalid application name

 ERROR 541 APPLICATION: operation failed

Version

 Protocol 5

 Skype for Windows 1.4

Application to application example

Jim and Joe are two users who installed “toru” application.

// register application on both sides

[JIM] => CREATE APPLICATION toru

[JIM] <= CREATE APPLICATION toru

[JOE] => CREATE APPLICATION toru

[JOE] <= CREATE APPLICATION toru

// JIM initiates communication to JOE

[JIM] => ALTER APPLICATION toru CONNECT joe

[JIM] <= ALTER APPLICATION toru CONNECT joe

// connection establishing ...

[JIM] <= APPLICATION toru CONNECTING joe

// .. and is successful

[JIM] <= APPLICATION toru CONNECTING

// .. and creates one stream

[JIM] <= APPLICATION toru STREAMS joe:1

// and JOE is notified by new stream

[JOE] <= APPLICATION toru STREAMS jim:1

// JIM sends data over stream to JOE

[JIM] => ALTER APPLICATION toru WRITE joe:1 Hello world!

[JIM] <= ALTER APPLICATION toru WRITE joe:1

// stay tuned while data is transmitted...

[JIM] <= APPLICATION toru SENDING joe:1

// .. and you are notified on delivery success

[JIM] <= APPLICATION toru SENDING

// JOE receives notification about the incoming message

[JOE] <= APPLICATION toru RECEIVED jim:1

// .. and reads data from stream

[JOE] => ALTER APPLICATION toru READ jim:1

[JOE] <= ALTER APPLICATION toru READ jim:1 Hello world!

// ... and is notified that stream is empty

[JOE] <= APPLICATION toru RECEIVED

// JOE sends back acknowledgement of message

// A datagram is used because it is not so important to acknowledge

[JOE] => ALTER APPLICATION toru DATAGRAM jim:1 Hello back!

[JOE] <= ALTER APPLICATION toru DATAGRAM jim:1

// Now data is transmitted...

[JOE] <= APPLICATION toru SENDING jim:1=11

// .. and notificed when it was sent (but delivery not assured)

[JOE] <= APPLICATION toru SENDING

// JIM receives datagram notifcation

[JIM] <= APPLICATION toru DATAGRAM joe:1 Hello back!

// JIM decides to end the communication

[JIM] => ALTER APPLICATION toru DISCONNECT joe:1

[JIM] <= ALTER APPLICATION toru DISCONNECT joe:1

// .. and when stream is closed it is notified

[JIM] <= APPLICATION toru STREAMS

// Also JOE receives notification that stream was closed

[JOE] <= APPLICATION toru STREAMS

// JIM unregisters applicaton

[JIM] => DELETE APPLICATION toru

[JIM] <= DELETE APPLICATION toru

// JOE unregisters applicaton

[JOE] => DELETE APPLICATION toru

[JOE] <= DELETE APPLICATION toru

Voice Streams

Refer to CALL object for properties relevant to manipulating voice streams.

To change voice stream properties of a CALL object, there are three extensions of the ALTER CALL command:

ALTER CALL <id> SET_INPUT SOUNDCARD="default" | PORT="port_no" |

FILE="FILE_LOCATION"

This enables you to set a port or a wav file as a source of your voice, instead of a microphone.

ALTER CALL <id> SET_OUTPUT SOUNDCARD="default" | PORT="port_no" |

FILE="FILE_LOCATION"

Redirects incoming transmission to a port or a wav file.

ALTER CALL <id> SET_CAPTURE_MIC PORT="port_no" | FILE="FILE_LOCATION"

Captures your own voice from microphone to a port or a wav file.

Note that as of version 3.5.0.202 redirecting of voice streams is also available for voicemails. Look for

corresponding ALTER commands at the end of this section.

Example 1 – capturing incoming transmission
//---

// In this example we will call Skype call testing service

// and play around with redirecting inputs and outputs.

// First, lets try capturing incoming transmission into a file.

-> call echo123

<- CALL 808 STATUS UNPLACED

<- CALL 808 STATUS ROUTING

<- CALL 808 STATUS RINGING

<- CONTACTS FOCUSED

<- CALL 808 VAA_INPUT_STATUS FALSE

<- CALL 808 STATUS INPROGRESS

//---

// Ok, the call is now in progress and the helpful lady robot

// on the other side is talking. We can capture her voice to

// a wav file by issuing the following command:

-> ALTER CALL 808 SET_OUTPUT file="c:\test.wav"

<- ALTER CALL 808 SET_OUTPUT file="c:\test.wav"

<- CALL 808 STATUS FINISHED

//---

// We now have a c:\test.wav file, containing the incoming transmission.

Example 2 – altering the source of the outgoing transmission
//---

// Let's call the helpful robot again and play a little trick on her.

// By altering sound input source, we can send her back her own voice

// that we recorded in our previous example.

-> call echo123

<- CALL 846 STATUS UNPLACED

<- CALL 846 STATUS ROUTING

<- CALL 846 STATUS RINGING

<- CALL 846 VAA_INPUT_STATUS FALSE

<- CALL 846 STATUS INPROGRESS

//---

// Wait until the lady robot asks for you to speak, then set

// call input to a file instead of microphone.

-> ALTER CALL 846 SET_INPUT file="c:\test.wav"

<- ALTER CALL 846 SET_INPUT file="c:\test.wav"

<- CALL 846 VAA_INPUT_STATUS TRUE

<- CALL 846 VAA_INPUT_STATUS FALSE

//---

// If the sound from fail was sent correctly, you should hear

// the robot's voice in the playback phase of the call test.

<- CALL 846 STATUS FINISHED

Example 3 – capturing voice from the microphone
//---

// In this example, we will capture our own voice.

-> call echo123

<- CALL 889 STATUS UNPLACED

<- CALL 889 STATUS ROUTING

<- CALL 889 STATUS RINGING

<- CONTACTS FOCUSED

<- CALL 889 VAA_INPUT_STATUS FALSE

<- CALL 889 STATUS INPROGRESS

//---

// Wait until the lady robot asks you to speak, then switch on

// sound capture to a file and talk.

-> ALTER CALL 889 SET_CAPTURE_MIC file="c:\test.wav"

<- ALTER CALL 889 SET_CAPTURE_MIC file="c:\test.wav"

<- CALL 889 STATUS FINISHED

//---

// The test.wav file should now contain your own voice.

The relevant properties of a CALL object can be accessed in a following manner:

-> GET CALL 748 INPUT

<- CALL 748 INPUT SOUNDCARD="default"

-> GET CALL 748 OUTPUT

<- CALL 748 OUTPUT SOUNDCARD="default"

-> GET CALL 748 VAA_INPUT_STATUS

<- CALL 748 VAA_INPUT_STATUS FALSE

Audio format

File: WAV PCM

Sockets: raw PCM samples
1. KHz mono, 16 bit

Note:

The voice access API works with virtual audio cables (VACs) versions 3 and 4. However, users withVAC version 3.x may

encounter distorted sound for the initial one or two seconds of a call.

When you redirect a port, Skype acts as a TCP client and goes looking for a TCP server on the given port. To receive

voice stream data, you have to have your own TCP server running on that port.

Skype4Com example:

 VoiceStreams.pas – Example of how to redirect voice streams to a TCP port.

 VoiceMail2WAV.pas – Example on how to save voicemails into WAV files.

 VoiceMail2Port.pas – Example on how to redirect voicemail output to a TCP port.

Version

Skype API version 2.6 (protocol 6)
ALTER CALL SET_INPUT

This enables you to set a port or a wav file as a source of your voice, instead of a microphone.

Syntax:

-> ALTER CALL <id> SET_INPUT SOUNDCARD="default" | PORT="port_no" |

FILE="FILE_LOCATION"

<- ALTER CALL <id> SET_INPUT SOUNDCARD="default" | PORT="port_no" |

FILE="FILE_LOCATION"

Note that for now, the SOUNDCARD parameter only accepts one value – “default”.

Example:
-> ALTER CALL 846 SET_INPUT file="c:\test.wav"

<- ALTER CALL 846 SET_INPUT file="c:\test.wav"

Version

Skype API version 2.6 (protocol 6)
ALTER CALL SET_OUTPUT

This command redirects incoming transmission to a port or a wav file.

Syntax:

-> ALTER CALL <id> SET_OUTPUT SOUNDCARD="default" | PORT="port_no" |

FILE="FILE_LOCATION"

<- ALTER CALL <id> SET_OUTPUT SOUNDCARD="default" | PORT="port_no" |

FILE="FILE_LOCATION"

Note that for now, the SOUNDCARD parameter only accepts one value – “default”. If this parameter is omitted or differs

from “default”, the soundcard output is muted.

Example:
-> ALTER CALL 808 SET_OUTPUT file="c:\test.wav"

<- ALTER CALL 808 SET_OUTPUT file="c:\test.wav"

Version

Skype API version 2.6 (protocol 6)
ALTER CALL SET_CAPTURE_MIC

This command captures your own voice from microphone to a port or a wav file.

Syntax:

-> ALTER CALL <id> SET_CAPTURE_MIC PORT="port_no" | FILE="FILE_LOCATION"

<- ALTER CALL <id> SET_CAPTURE_MIC PORT="port_no" | FILE="FILE_LOCATION"

Example:
-> ALTER CALL 889 SET_CAPTURE_MIC file="c:\test.wav"

<- ALTER CALL 889 SET_CAPTURE_MIC file="c:\test.wav"

Version

Skype API version 2.6 (protocol 6)
ALTER VOICEMAIL SET_INPUT

This enables you to set a port or a wav file as a source of voicemail’s input instead of a microphone.

Syntax:

-> ALTER VOICEMAIL <id> SET_INPUT SOUNDCARD="default" | PORT="port_no" |

FILE="FILE_LOCATION"

<- ALTER VOICEMAIL <id> SET_INPUT SOUNDCARD="default" | PORT="port_no" |

FILE="FILE_LOCATION"

Note that for now, the SOUNDCARD parameter only accepts one value – “default”. If this parameter is omitted or differs

from “default”, the soundcard input is muted.

Example:
-> ALTER VOICEMAIL 146 SET_INPUT file="c:\test.wav"

<- ALTER VOICEMAIL 146 SET_INPUT file="c:\test.wav"

Version

Skype API version 3.5.0.202 (protocol 8)
ALTER VOICEMAIL SET_OUTPUT

This command redirects voicemail output to a port or a wav file.

Syntax:

-> ALTER VOICEMAIL <id> SET_OUTPUT SOUNDCARD="default" | PORT="port_no" |

FILE="FILE_LOCATION"

<- ALTER VOICEMAIL <id> SET_OUTPUT SOUNDCARD="default" | PORT="port_no" |

FILE="FILE_LOCATION"

Note that for now, the SOUNDCARD parameter only accepts one value – “default”. If this parameter is omitted or differs

from “default”, the soundcard output is muted.

Example:
-> ALTER VOICEMAIL 108 SET_OUTPUT file="c:\test.wav"

<- ALTER VOICEMAIL 108 SET_OUTPUT file="c:\test.wav"

Version

Skype API version 3.5.0.202 (protocol 8)
ALTER VOICEMAIL SET_CAPTURE_MIC

This command captures your own voice from microphone to a port or a wav file.

Syntax:

-> ALTER VOICEMAIL <id> SET_CAPTURE_MIC PORT="port_no" | FILE="FILE_LOCATION"

<- ALTER VOICEMAIL <id> SET_CAPTURE_MIC PORT="port_no" | FILE="FILE_LOCATION"

Example:
-> ALTER VOICEMAIL 189 SET_CAPTURE_MIC file="c:\test.wav"

<- ALTER VOICEMAIL 189 SET_CAPTURE_MIC file="c:\test.wav"

Version

Skype API version 3.5.0.202 (protocol 8)

Testing connections

This command can be used to test whether connection between your application and Skype is still alive. This command is

not meant to query online status of remote users.

Syntax

PING

Response

If successful PONG is echoed back

Version

Protocol 1

*

Note that from protocol 6 and onward, the PONG reply to PING is asynchronous.

Objects

This section contains the Skype objects.

USER object
NB! When you retrieve USER object records with SEARCH USERS command, the user profile data is guaranteed to be

accessible with GET USER <user_id> <property_name> commandsonly until another SEARCH command is

executed. The reason for this is that big SEARCHcommands can and often trigger Skype’s internal garbage collection

routine that can clear out the data retreived by previous searches.

The user object has the following properties:

 HANDLE – username, for example: USER pamela HANDLE pamela .

 FULLNAME – user’s full name, for example: USER pamela FULLNAME Jane Doe .

 BIRTHDAY – user’s birth date in YYYYMMDD format, for example: USER bitman BIRTHDAY 19780329 .

 SEX – example: USER pamela SEX UNKNOWN . Values:

o UNKNOWN – user has not specified sex in personal profile.

o MALE

o FEMALE

 LANGUAGE – name of language, for example: USER mike LANGUAGE English . In protocol 4 with the ISO639 prefix,

example: USER mike LANGUAGE en English .

 COUNTRY – name of country, for example: USER mike COUNTRY Estonia . In protocol 4 with the ISO 3166 prefix,

example: USER mike COUNTRY ee Estonia .

 PROVINCE – example: USER mike PROVINCE Harjumaa .

 CITY – example: USER mike CITY Tallinn .

 PHONE_HOME – example: USER mike PHONE_HOME 3721111111 .

 PHONE_OFFICE – example: USER mike PHONE_OFFICE 3721111111 .

 PHONE_MOBILE – example: USER mike PHONE_MOBILE 3721111111 .

 HOMEPAGE – example: USER mike HOMEPAGE http://www.joltid.com .

 ABOUT – example: USER mike ABOUT I am a nice person .

 HASCALLEQUIPMENT – always returns TRUE . Example: USER pamela HASCALLEQUIPMENT TRUE .

 IS_VIDEO_CAPABLE – possible values: True or False

 IS_VOICEMAIL_CAPABLE – possible values: True or False

 BUDDYSTATUS – example: USER pamela BUDDYSTATUS 2 . Possible BUDDYSTATUS values:

o 0 – never been in contact list.

o 1 – deleted from contact list. (read-write)

o 2 – pending authorisation. (read-write)

o 3 – added to contact list.

 ISAUTHORIZED – (read-write) is user authorized by current user? Example: USER pamela ISAUTHORIZED TRUE . Values:

o TRUE

o FALSE

 ISBLOCKED – (read-write) is user blocked by current user? Example: USER spammer ISBLOCKED TRUE . Values:

o TRUE

o FALSE

 ONLINESTATUS – user online status, for example: USER mike ONLINESTATUS ONLINE . Possible values:

o UNKNOWN – unknown user.

o OFFLINE – user is offline (not connected). Will also be returned if current user is not authorized by other user to see his/her

online status.

o ONLINE – user is online.

o AWAY – user is away (has been inactive for certain period).

o NA – user is not available.

o DND – user is in “Do not disturb” mode.

 SkypeOut – user is in the SkypeOut contact list.

 SKYPEME (Protocol 2)

 LASTONLINETIMESTAMP – UNIX timestamp, available only for offline user. Example USER mike LASTONLINETIMESTAMP

1078959579 .

 CAN_LEAVE_VM – is it possible to send voicemail to user? Example: USER test CAN_LEAVE_VM TRUE . Possible values:

o TRUE

o FALSE

 SPEEDDIAL – (read-write) speeddial code assigned to user.

 RECEIVEDAUTHREQUEST – text message for authorization request; available only when user asks for authorization.

 MOOD_TEXT – mood text for user (mood text is only visible to authorised users; visible in Skype for Windows 2.0).

 RICH_MOOD_TEXT – advanced version of user’s mood message. See SET PROFILE RICH_MOOD_TEXTcommand for more

information. Introduced in API version 3.0

 ALIASES <text> – list of assigned aliases (aliases are only visible as a result of a direct match for alias search).

 TIMEZONE <offset> – time offset from GMT in minutes; visible in Skype for Windows 2.0.

 IS_CF_ACTIVE – whether the user has Call Forwarding activated or not. Possible values:

o TRUE

o FALSE

 NROF_AUTHED_BUDDIES – Stores the number of authorized contacts in the contact list.

Most user properties are read-only. The following properties are read-write and can be modified with the SET command:

 BUDDYSTATUS

o 1 – delete from buddylist

o 2 – add user into contactlist and ask for authorization: SET USER echo123 BUDDYSTATUS 2 Please authorize me

 ISBLOCKED

o TRUE – block user

o FALSE – unblock user

 ISAUTHORIZED

o TRUE – authorize user

o FALSE – dismiss authorization for user

 SPEEDDIAL – speeddial code assigned to user

 DISPLAYNAME – By default this property is empty. If a value is assigned to this property with SET <skypename>

DISPLAYNAME <value> then that value will be displayed in Skype UI instead of user’sFULLNAME.

PROFILE object
Use the GET PROFILE command to retrieve profile information. The PROFILE object has the following properties:

 PSTN_BALANCE – (read only) SkypeOut balance value. Note that the precision of profile balance value is currently fixed at 2

decimal places, regardless of currency or any other settings.

 PSTN_BALANCE_CURRENCY – (read only) SkypeOut currency value

 FULLNAME – text

 BIRTHDAY – yyyymmdd, 0 is returned if not set; no partial birthday allowed

 SEX – MALE | FEMALE | UNKNOWN

 LANGUAGES – [lang[lang]*] — lang is a two letter ISO code (en, de, et)

 COUNTRY – iso2 name, a two letter ISO code; name – country name

 IPCOUNTRY – GeoIP location, country code in two letter ISO format

 PROVINCE – text

 CITY – text

 PHONE_HOME – text

 PHONE_OFFICE – text

 PHONE_MOBILE – text

 HOMEPAGE – text

 ABOUT – text

 MOOD_TEXT – user’s mood message (the plain text version).

 RICH_MOOD_TEXT – advanced version of user’s mood message. See SET PROFILE RICH_MOOD_TEXTcommand for more

information. Introduced in API version 3.0

 TIMEZONE – Offset is given in seconds, according to this formula: (24 + offset_from _GMT) * 3600. For example, value of this

property for Estonia (GMT+2) would be 93600 (26*3600).

 CALL_APPLY_CF – To enable/disable call forwarding – See Call forwarding

 CALL_NOANSWER_TIMEOUT – Time out on call – See Call forwarding

 CALL_FORWARD_RULES – See Call forwarding

 CALL_SEND_TO_VM – To enable/disable voicemail for forwarded calls – See Call forwarding

 SMS_VALIDATED_NUMBERS – A read-only property that contains a comma-separated list of phone numbers the user has registered

for usage in reply-to field of SMS messages. See [#SMS_NUMBER_VALIDATION Setting mobile phone number on reply-to field

in outgoing SMS messages] section for further information.

CALL object
The CALL object has the following properties:

 TIMESTAMP – time when call was placed (UNIX timestamp), for example CALL 17 TIMESTAMP 1078958218

 PARTNER_HANDLE – for example CALL 17 PARTNER_HANDLE mike. In case of SkypeOut and SkypeIn calls this property

contains the PSTN number of remote party, prefixed by countrycode (+123456789).

 PARTNER_DISPNAME – for example CALL 17 PARTNER_DISPNAME Mike Mann

 TARGET_IDENTITY – This property is set when you a) have a SkypeIn number and b) receive an incomingPSTN call. The value of

call’s target identity property is then set to your own SkypeIn number. This property is not set if the incoming call is P2P. This

property was introduced in API version 3.1

 CONF_ID – if the CONF_ID>0 the call is a conference call, for example: CALL 17 CONF_ID 0

 TYPE – call type, for example: CALL 17 TYPE OUTGOING_PSTN . Possible values:

o INCOMING_PSTN – incoming call from PSTN

o OUTGOING_PSTN – outgoing call to PSTN

o INCOMING_P2P – incoming call from P2P

o OUTGOING_P2P – outgoing call to P2P

 STATUS – call status, for example: CALL 17 STATUS FAILED . Possible values:

o UNPLACED – call was never placed

o ROUTING – call is currently being routed

o EARLYMEDIA – with pstn it is possible that before a call is established, early media is played. For example it can be a calling

tone or a waiting message such as all operators are busy.

o FAILED – call failed – try to get a FAILUREREASON for more information.

o RINGING – currently ringing

o INPROGRESS – call is in progress

o ONHOLD – call is placed on hold

o FINISHED – call is finished

o MISSED – call was missed

o REFUSED – call was refused

o BUSY – destination was busy

o CANCELLED (Protocol 2)

o TRANSFERRING – Refer to ALTER CALL TRANSFER command. Added in protocol 7 (API version 3.0)

o TRANSFERRED – Refer to ALTER CALL TRANSFER command. Added in protocol 7 (API version 3.0)

o VM_BUFFERING_GREETING – voicemail greeting is being downloaded

o VM_PLAYING_GREETING – voicemail greeting is being played

o VM_RECORDING – voicemail is being recorded

o VM_UPLOADING – voicemail recording is finished and uploaded into server

o VM_SENT – voicemail has successfully been sent

o VM_CANCELLED – leaving voicemail has been cancelled

o VM_FAILED – leaving voicemail failed; check FAILUREREASON

o WAITING_REDIAL_COMMAND – This status is set when your outgoing call to PSTN gets rejected by remote party. This state

was added in version 3.5 (protocol 8).

o REDIAL_PENDING – This status is set when you press redial button on the Call Phones tab of the Skype interface. This state

was added in version 3.5 (protocol 8).

 VIDEO_STATUS – Commands ALTER CALL VIDEO_SEND and RECEIVE ALTER CALL VIDEO_ RECEIVE can be used to

change call video status. Possible values of this property are:

o VIDEO_NONE

o VIDEO_SEND_ENABLED

o VIDEO_RECV_ENABLED

o VIDEO_BOTH_ENABLED

 VIDEO_SEND_STATUS and VIDEO_RECEIVE_STATUS – possible values of this property are:

o NOT_AVAILABLE – the client does not have video capability because video is disabled or a webcam is unplugged).

o AVAILABLE – the client is video-capable but the video is not running (can occur during a manual send).

o STARTING – the video is sending but is not yet running at full speed.

o REJECTED – the receiver rejects the video feed (can occur during a manual receive).

o RUNNING – the video is actively running.

o STOPPING – the active video is in the process of stopping but has not halted yet.

o PAUSED – the video call is placed on hold.

 FAILUREREASON – example: CALL 17 FAILUREREASON 1 (numeric).

 SUBJECT – not used.

 PSTN_NUMBER – example: CALL 17 PSTN_NUMBER 372123123 .

 DURATION – example: CALL 17 DURATION 0 .

 PSTN_STATUS – error string from gateway, in the case of a PSTN call, for example: CALL 26 PSTN_STATUS 6500 PSTN

connection creation timeout .

 CONF_PARTICIPANTS_COUNT – number of non-hosts in the case of a conference call. Possible values are:

o 0 – call is not a conference. For the host, CONF_PARTICIPANTS_COUNT is always 0.

o 1 – call is a former conference.

o 2, 3, 4 – call is a conference. Note that from 2.5 and upwards, Skype API manages conference participation in a slightly

different manner. In newer versions, after the call is finished, theCONF_PARTICIPANTS_COUNT reports highest number of

participants the call had at any given time.

 CONF_PARTICIPANT n – the username of the nth participant in a conference call, the call type and status and the displayname of

participants who are not the host. For example: CALL 59 CONF_PARTICIPANT 1 echo123 INCOMING_P2P

INPROGRESS Echo Test Service .

 VM_DURATION

 VM_ALLOWED_DURATION – maximum duration in seconds allowed to leave voicemail

 RATE – expressed as cost per minute (added in protocol 6).

 RATE_CURRENCY – EUR|USD.. This property gets populated from currency selected in Skype account details –

PSTN_BALANCE_CURRENCY property of the PROFILE object. However, the value ofPSTN_BALANCE_CURRENCY can change

in time (added in protocol 6).

 RATE_PRECISION – the number of times to divide RATE by 10 to get the full currency unit. For example, aRATE of 1234

with RATE_PRECISION of 2 amounts to 12.34 (added in protocol 6).

 INPUT – New in API version 2.6 Refer to Voice Streams section for more information. Can have following values:

o SOUNDCARD="default" – default is currently the only acceptable value.

o PORT="port_no" – the ID of the audio port (1..65535)

o FILE="filename.wav" – the path and name of the audio file.

 OUTPUT – can have all the same values as INPUT property. Refer to Voice Streams section for more information. New

in API version 2.6

 CAPTURE_MIC – can have all the same values as INPUT and OUTPUT properties. Refer to Voice Streamssection for more

information. New in API version 2.6

 VAA_INPUT_STATUS – true|false, indicates if voice input is enabled. New in API version 2.6

 FORWARDED_BY – Contains identity of the user who forwarded a call. If the user who forwarded the call could not be identified

then this property will be set to “?”. New in API version 2.6

 TRANSFER_ACTIVE – Refer to ALTER CALL TRANSFER command. Added in protocol 7 (API version 3.0)

 TRANSFER_STATUS – Refer to ALTER CALL TRANSFER command. Added in protocol 7 (API version 3.0)

 TRANSFERRED_BY – Refer to ALTER CALL TRANSFER command. Added in protocol 7 (API version 3.0)

 TRANSFERRED_TO – Refer to ALTER CALL TRANSFER command. Added in protocol 7 (API version 3.0)

Notes

 Status values for voicemails (VM_xxx) and VM_DURATION/VM_ALLOWED_DURATION apply to calls which are forwarded into

voicemail. This feature was introduced in protocol 5.

Most call properties are read-only. The following properties are read-write and can be modified with the SETcommand:

 STATUS – for call control. Possible values:

o ONHOLD – hold call

o INPROGRESS – answer or resume call

o FINISHED – hang up call

 SEEN – sets call as seen, so that a missed call is seen and can be removed from the missed calls list.

 DTMF – sends VALUE as DTMF. Permitted symbols in VALUE are: {0..9,#,*}.

 JOIN_CONFERENCE – joins call with another call into conference. VALUE is the ID of another call.

MESSAGE object
Version

Protocol 1, deprecated in protocol 3 and replaced by the CHATMESSAGE object.

Properties

 TIMESTAMP – time when the message was sent (UNIX timestamp), for example: MESSAGE 21 TIMESTAMP 1078958218

 PARTNER_HANDLE – for example MESSAGE 21 PARTNER_HANDLE mike

 PARTNER_DISPNAME – for example MESSAGE 21 PARTNER_DISPNAME Mike Mann

 CONF_ID – not used.

 TYPE – message type, for example MESSAGE 21 TYPE TEXT . Possible TYPE values:

o AUTHREQUEST – authorization request

o TEXT – IM or topic set

o CONTACTS – contacts data

o UNKNOWN – other

 STATUS – message status, for example MESSAGE 21 STATUS QUEUED . Possible values:

o SENDING – message is being sent

o SENT – message was sent

o FAILED – message sending failed. Try to get a FAILUREREASON for more information.

o RECEIVED – message has been received

o READ – message has been read

o IGNORED – message was ignored

o QUEUED – message is queued

 FAILUREREASON – for example MESSAGE 21 FAILUREREASON 1 (numeric).

 BODY – message body, for example MESSAGE 21 BODY Hi, what's up?

Most message properties are read-only. The following property is read-write and can be modified with theSET command:

 SEEN – the message is seen and will be removed from missed messages list. The UI sets this automatically if auto-popup is enabled

for the user.

CHAT object
Version

Protocol 3 (updated in protocol 7)

Properties

 NAME – chat ID, for example CHAT #test_l/$6a072ce5537c4044 NAME #test_l/$6a072ce5537c4044

 TIMESTAMP – time when chat was created, for example CHAT #test_l/$6a072ce5537c4044 TIMESTAMP
1078958218

 ADDER – user who added the current user to chat, for example CHAT 1078958218 ADDER k6rberebane

 STATUS – chat status, for example CHAT #test_l/$6a072ce5537c4044 STATUS MULTI_SUBSCRIBED . Possible

values:

o LEGACY_DIALOG – old style IM

o DIALOG – 1:1 chat.

o MULTI_SUBSCRIBED – participant in chat

o UNSUBSCRIBED – left chat

 POSTERS – members who have posted messages, for example CHAT #test_l/$6a072ce5537c4044 POSTERS
k6rberebane test_3

 MEMBERS – all users who have been there, for example CHAT #test_l/$6a072ce5537c4044 MEMBERS k6rberebane
test test_2 test_3

 TOPIC – chat topic. Example: CHAT #test_l/$6a072ce5537c4044 TOPIC API testimine

 TOPICXML – set when a chat topic contains XML formatting elements (topic was changed

with ALTER CHATSETTOPICXML command) This property works in parallel with TOPIC property – when TOPICXML is set, the

value is stripped of XML tags and updated in TOPIC.

 CHATMESSAGES – all messages IDs in this chat, for example CHAT #test_l/$6a072ce5537c4044 CHATMESSAGES 34,
35, 36, 38, 39

 ACTIVEMEMBERS – members who have stayed in chat, for example CHAT #test_l/$6a072ce5537c4044
ACTIVEMEMBERS k6rberebane test_2 test_3

 FRIENDLYNAME – name shown in chat window title, for example CHAT #test_l/$6a072ce5537c4044 FRIENDLYNAME
Test Test XX | tere ise ka

 CHATMESSAGES – list of chatmessage identifiers

 RECENTCHATMESSAGES – list of missed/recent chatmessage identifiers

 BOOKMARKED – TRUE|FALSE (added in protocol version 6 / Skype API version 2.5)

Following properties were added to CHAT object in protocol 7 (API version 3.0):

 MEMBEROBJECTS – contains the list of CHATMEMBER object IDs. Refer to

o CHATMEMBER object for list of properties

o GET CHATMEMBER command on how to access those properties.

o GET CHAT MEMBEROBJECTS command on how to get a list of chatmember object IDs for a given chat.

 PASSWORDHINT – contains password hint text for the chat object. Refer to ALTER CHAT SETPASSWORDcommand on how to

set chat passwords.

 GUIDELINES – contains chat guidelines text. Refer to ALTER CHAT SETGUIDELINES command on how to set chat guidelines.

 OPTIONS – bitmap of chat options. Refer to ALTER CHAT SETOPTIONS command for more information.

 DESCRIPTION – currently used only for hidden synchronization channels for managing shared groups.

 DIALOG_PARTNER – the handle of the dialog partner for dialog type chats (chats with two participants).

 ACTIVITY_TIMESTAMP – the UNIX timestamp of last activity.

 TYPE – chat type with following possible values:

o LEGACY_DIALOG – no longer supported.

o DIALOG – a chat with only two participants.

o MULTICHAT – a chat with more than two participants.

o SHAREDGROUP – a chat used for synchronization of shared contact groups.

o LEGACY_UNSUBSCRIBED – no longer supported.

 MYSTATUS – user’s current status in chat. Possible values are:

o CONNECTING – status set when the system is trying to connect to the chat.

o WAITING_REMOTE_ACCEPT – set when a new user joins a public chat. When the chat has “participants need authorization to

read messages” option, the MYSTATUS property of a new applicant will remain in this status until he gets accepted or rejected by

a chat administrator. Otherwise user’s MYSTATUS will automatically change to either LISTENER or USER, depending on public

chat options.

o ACCEPT_REQUIRED – this status is used for shared contact groups functionality.

o PASSWORD_REQUIRED – status set when the system is waiting for user to supply the chat password.

o SUBSCRIBED – set when user joins the chat.

o UNSUBSCRIBED – set when user leaves the chat or chat ends.

o CHAT_DISBANDED – status set when the chat is disbanded.

o QUEUED_BECAUSE_CHAT_IS_FULL – currently the maximum number of people in the same chat is 100.

o APPLICATION_DENIED – set when public chat administrator has rejected user from joining.

o KICKED – status set when the user has been kicked from the chat. Note that it is possible for the user to re-join the chat after

being kicked.

o BANNED – status set when the user has been banned from the chat.

o RETRY_CONNECTING – status set when connect to chat failed and system retries to establish connection.

 MYROLE – user’s privilege level in chat Refer to CHAT ROLES section for more information.

 BLOB – for public chats, this property contains encoded list of chat join-points. Contents of this field is used in public chat URLs.

 APPLICANTS – this property contains list of skypenames of people who have applied to join the chat but have not yet been accepted

by a public chat administrator. Users only become applicants when the chat hasJOINERS_BECOME_APPLICANTS option. Refer

to ALTER CHAT SETOPTIONS command for more information.

CHATMEMBER object
Version

Protocol 7 (API version 3.0)

Properties:

 CHATNAME –

 IDENTITY –

 ROLE – CREATOR|MASTER|HELPER|USER|LISTENER|APPLICANT Refer to chat roles for more information.

 IS_ACTIVE – TRUE|FALSE

o TRUE – indicates that the chat member has joined the chat.

o FALSE indicates that the member has been added to the chat but has not yet acknowledged it. Normally occurs when the member

who was added to a chat was offline at the time. Once IS_ACTIVE becomesTRUE, it will remain true.

Refer to GET CHATMEMBER command on how to access CHATMEMBER properties.

CHATMESSAGE object
Version

Protocol 3. Supersedes the MESSAGE object. Updated in protocol 7. Note that when your application connects to Skype,

“PROTOCOL 7” command must be sent to Skype before your client can recognize new message types added in protocol

7. Connecting with default protocol (protocol 1) will cause new message types being reported as UNKNOWN.

Properties

 TIMESTAMP – time when message was sent (UNIX timestamp), for example MESSAGE 21 TIMESTAMP 1078958218

 PARTNER_HANDLE – NB! This property is deprecated since API version 3.0 and replaced with FROM_HANDLE.

 PARTNER_DISPNAME – NB! This property is deprecated since API version 3.0 and replaced withFROM_DISPNAME.

 FROM_HANDLE – skypename of the originator of the chatmessage.

 FROM_DISPNAME – displayed name of the originator of the chatmessage.

 TYPE – message type, for example MESSAGE 21 TYPE TEXT . Possible values:

o SETTOPIC – change of chat topic

o SAID – IM

o ADDEDMEMBERS – invited someone to chat

o SAWMEMBERS – chat participant has seen other members

o CREATEDCHATWITH – chat to multiple people is created

o LEFT – someone left chat; can also be a notification if somebody cannot be added to chat

o POSTEDCONTACTS – system message that is sent or received when one user sends contacts to another. Added in protocol 7.

o GAP_IN_CHAT – messages of this type are generated locally, during synchronization, when a user enters a chat and it becomes

apparent that it is impossible to update user’s chat history completely. Chat history is kept only up to maximum of 400 messages

or 2 weeks. When a user has been offline past that limit, GAP_IN_CHAT notification is generated. Added in protocol 7.

o SETROLE – system messages that are sent when a chat member gets promoted or demoted. Refer

toALTER CHATMEMBER SETROLETO command for more info on how to change chat member roles. Added in protocol 7.

o KICKED – system messages that are sent when a chat member gets kicked. Refer to ALTER CHAT KICKcommand for more

information. Added in protocol 7.

o KICKBANNED – system messages that are sent when a chat member gets banned. Refer

to ALTER CHATKICKBAN command for more information. Added in protocol 7.

o SETOPTIONS – system messages that are sent when chat options are changed. Refer

to ALTER CHATSETOPTIONS command for more information. Added in protocol 7.

o SETPICTURE – system messages that are sent when a chat member has changed the public chat topic picture. Added in protocol

7.

o SETGUIDELINES – system messages that are sent when chat guidelines are changed. Refer

to ALTERCHAT SETGUIDELINES command for more information. Added in protocol 7.

o JOINEDASAPPLICANT – notification message that gets sent in a public chat withJOINERS_BECOME_APPLICANTS options,

when a new user joins the chat. See ALTER CHAT SETOPTIONScommand for more information on chat options. Added in

protocol 7.

o UNKNOWN – unknown message type, possibly due to connecting to Skype with older protocol.

 STATUS – message status, for example MESSAGE 21 STATUS QUEUED . Possible values:

o SENDING – message is being sent

o SENT – message was sent

o RECEIVED – message has been received

o READ – message has been read

 LEAVEREASON – used with LEFT type message, for example CHATMESSAGE 21 LEAVEREASON UNSUBSCRIBE . Possible

values:

o USER_NOT_FOUND – user was not found

o USER_INCAPABLE – user has an older Skype version and cannot join multichat

o ADDER_MUST_BE_FRIEND – recipient accepts messages from contacts only and sender is not in his/her contact list

o ADDED_MUST_BE_AUTHORIZED – recipient accepts messages from authorized users only and sender is not authorized

o UNSUBSCRIBE – participant left chat

 CHATNAME – chat that includes the message, for example #test_3/$b17eb511457e9d20

 USERS – people added to chat

 IS_EDITABLE – TRUE|FALSE Refer to SET CHATMESSAGE BODY command for more information on how to edit chat

message text (BODY) and on what conditions is such editing permitted. This property was introduced in API version 3.0

 EDITED_BY – identity of the last user who edited the message. New in API version 3.0

 EDITED_TIMESTAMP – UNIX timestamp of the last edit. New in API version 3.0

 OPTIONS – numeric field that contains chat options bitmap in system messages that get sent out when a change is made to chat

options (messages where TYPE is SETOPTIONS). In normal messages the value of this field is 0. Refer

to ALTER CHAT SETOPTIONS command for more information.

 ROLE – used in system messages that get sent when a public chat administrator has promoted or demoted a chat member.

The TYPE property of such messages is set to SETROLE. In these messages the value of this field is set to the new assigned role of

the promoted or demoted chat member. In normal messages the value of this property is set to UNKNOWN. Refer

to CHAT ROLES section for a list of different chat roles andALTER CHATMEMBER SETROLETO command for how chat roles

can be changed. New in API version 3.0

Most chatmessage properties are read-only. The following property is read-write and can be modified with

the SET command:

 SEEN – mark missed chatmessage as seen and removes chat from missed events.

 BODY – message text. Note that this property was read-only prior to API version 3.0

VOICEMAIL object
Version

Protocol 5

Properties

 TYPE – type of voicemail object

o INCOMING – voicemail received from partner

o OUTGOING – voicemail sent to partner

o DEFAULT_GREETING – Skype default greeting from partner

o CUSTOM_GREETING – partner’s recorded custom greeting

o UNKNOWN

 PARTNER_HANDLE – username for voicemail sender (for incoming) or recipient (for outgoing)

 PARTNER_DISPNAME – user displayname for partner

 STATUS – current status of voicemail object

o NOTDOWNLOADED – voicemail is stored on server (has not been downloaded yet)

o DOWNLOADING – downloading from server to local machine

o UNPLAYED – voicemail has been downloaded but not played back yet

o BUFFERING – buffering for playback

o PLAYING – currently played back

o PLAYED – voicemail has been played back

o BLANK – intermediate status when new object is created but recording has not begun

o RECORDING – voicemail currently being recorded

o RECORDED – voicemail recorded but not yet uploaded to the server

o UPLOADING – voicemail object is currently being uploaded to server

o UPLOADED – upload to server finished but not yet deleted; object is also locally stored

o DELETING – pending delete

o FAILED – downloading voicemail/greeting failed

o UNKNOWN

 FAILUREREASON possible values

o MISC_ERROR

o CONNECT_ERROR

o NO_VOICEMAIL_PRIVILEGE

o NO_SUCH_VOICEMAIL

o FILE_READ_ERROR

o FILE_WRITE_ERROR

o RECORDING_ERROR

o PLAYBACK_ERROR

o UNKNOWN

 SUBJECT – not used

 TIMESTAMP

 DURATION – actual voicemail duration in seconds

 ALLOWED_DURATION – maximum voicemail duration in seconds allowed to leave to partner

 INPUT – New in API version 3.5.0.202 Can have following values:

o SOUNDCARD="default" – default is currently the only acceptable value.

o PORT="port_no" – the ID of the audio port (1..65535)

o FILE="filename.wav" – the path and name of the audio file.

 OUTPUT – can have all the same values as INPUT property. New in API version 3.5.0.202

 CAPTURE_MIC – can have all the same values as INPUT and OUTPUT properties. New in API version 3.5.0.202

SMS object
Version

Added in API version 2.5

Refer to Sending and managing SMS messages section for additional info.

Properties

 BODY – SMS message text, read-write access

 TYPE – Possible values:

o INCOMING – received messages. Note that as sending SMS messages to Skype numbers is currently not supported, this status is

here mainly for future compatibility.

o OUTGOING – sent messages

o CONFIRMATION_CODE_REQUEST – [#SMS_NUMBER_VALIDATION used for registering user’s Skype ID as a reply-to

number]

o CONFIRMATION_CODE_SUBMIT – [#SMS_NUMBER_VALIDATION used for registering user’s Skype ID as a reply-to

number]

o UNKNOWN – for unknown reasons, the message type is unknown

 STATUS – Possible values:

o RECEIVED – the message has been received (but not tagged as read)

o READ – the message has been tagged as read

o COMPOSING – the message has been created but not yet sent

o SENDING_TO_SERVER – the message is in process of being sent to server

o SENT_TO_SERVER – the message has been sent to server

o DELIVERED – server has confirmed that the message is sent out to recepient

o SOME_TARGETS_FAILED – server reports failure to deliver the message to one of the recepients within 24h

o FAILED – the message has failed, possible reason may be found in FAILUREREASON property

o UNKNOWN – message status is unknown

 FAILUREREASON

o MISC_ERROR – indicates failure to supply a meaningful error message

o SERVER_CONNECT_FAILED – unable to connect to SMS server

o NO_SMS_CAPABILITY – recepient is unable to receive SMS messages

o INSUFFICIENT_FUNDS – insufficient Skype Credit to send an SMS message

o INVALID_CONFIRMATION_CODE – set when an erroneous code was submitted in aCONFIRMATION_CODE_SUBMIT

message

o USER_BLOCKED – user is blocked from the server

o IP_BLOCKED – user’s IP is blocked from the server

o NODE_BLOCKED – user’s p2p network node has been blocked from the server

o UNKNOWN – default failure code

o NO_SENDERID_CAPABILITY – Set when a CONFIRMATION_CODE_REQUEST SMS message is sent with a mobile phone

number containing country code of either USA, Taiwan or China. Setting reply-to number from Skype SMS’s to your mobile

number is not supported in these countries. Added in Skype version 3.5 (protocol 8).

 IS_FAILED_UNSEEN – TRUE|FALSE To change this value from True to False, use SET SMS <id> SEENcommand

 TIMESTAMP – Unix timestamp (usually GMT)

 PRICE – cost of sending the SMS message (integer value)

 PRICE_PRECISION – 1|2|3.. the number of times the PRICE is divided by 10 to express ther full currency unit.

For example, a PRICE of 1234 with PRICE_PRECISION of 2 amounts to 12.34.

 PRICE_CURRENCY – EUR|USD..

 REPLY_TO_NUMBER – reply-to field of the SMS message, read-write access

 TARGET_NUMBERS – comma-separated list of SMS recepients (+number, +number, +number..), read-write access

 TARGET_STATUSES – a string containing comma-separated list of recepients with message delivery status for each of them, in

following format: “+number=status, +number=status..” Possible values for target statuses are:

o TARGET_ANALYZING

o TARGET_UNDEFINED

o TARGET_ACCEPTABLE

o TARGET_NOT_ROUTABLE

o TARGET_DELIVERY_PENDING

o TARGET_DELIVERY_SUCCESSFUL

o TARGET_DELIVERY_FAILED

o UNKNOWN

APPLICATION object
Properties

CONNECTABLE – query connectable users. NB! From API version 3.0, this property enters the deprecation process.

-> GET APPLICATION appname CONNECTABLE

<- APPLICATION appname CONNECTABLE [username[username]*]

CONNECTING – query on-going connection process after the connection is established. Username is removed

from CONNECTING list.

-> GET APPLICATION appname CONNECTING

<- APPLICATION appname CONNECTING [username[username]*]

STREAMS – query open streams (connections)

-> GET APPLICATION appname STREAMS

<- APPLICATION appname STREAMS [username:id[username:id]*]

SENDING – query if currently sending any data. After the data is sent, the stream name is removed from

the SENDING list

-> GET APPLICATION appname RECIEVED

<- APPLICATION appname SENDING [username:id=bytes [username:id bytes]*]

Note: In Skype 1.4x, the number of bytes reported by the SENDING notification following anAPPLICATION WRITE is

2 bytes longer than that which was written.

-> alter application exe write testtest20:1 w

<- ALTER APPLICATION exe WRITE testtest20:1

<- APPLICATION exe SENDING testtest20:1 3

-> alter application exe write testtest20:1 1234567890

<- ALTER APPLICATION exe WRITE testtest20:1

<- APPLICATION exe SENDING testtest20:1 12

RECEIVED – query if there is data waiting in received buffer. After the data is read from the stream, the stream name is

removed from the RECEIVED list.

-> GET APPLICATION appname RECEIVED

<- APPLICATION appname SENDING [username:id=bytes [username:id bytes]*]

incoming datagram notification

<- APPLICATION appname DATAGRAM user:id text

Version

 Protocol 5

 Skype for Windows 1.4

GROUP object
The GROUP object enables users to group contacts. There are two types of GROUP ; custom groups and hardwired groups.

The GROUP object has the following properties:

 TYPE: {ALL | CUSTOM | HARDWIRED | SHARED_GROUP | PROPOSED_SHARED_GROUP}

o ALL – all groups. (new in API version 2.5)

o CUSTOM – user-defined groups.

o HARDWIRED – “smart” groups defined by Skype to manage groups.

o SHARED_GROUP – shared groups, with semi-automatic cross-authrization between contacts (new in APIversion 2.5)

o PROPOSED_SHARED_GROUP – a group that has turned into a shared group and is waiting for accept/decline (new

in API version 2.5)

 CUSTOM_GROUP_ID – a persistent ID for custom groups which can be empty at the start of group creation.

 DISPLAYNAME – the display name of the group (read-write)

 NROFUSERS – the number of contacts in this group (read-only)

 NROFUSERS_ONLINE – the number of contacts online in this group (read-only)

 USERS – the list of contacts in the group (read-only)

Following is a description of all group types defined by Skype:

HARDWIRED GROUPS are described in the following table.

Contact group type Description

ALL_USERS
This group contains all users I know about, including users in my

contactlist, users I recently contacted and blocked users.

ALL_FRIENDS
This group contains all contacts in my contactlist (also known as

friends)

SKYPE_FRIENDS This group contains Skype contacts in my contactlist.

SkypeOut_FRIENDS This group contains SkypeOut contacts in my contactlist.

ONLINE_FRIENDS
This group contains Skype contacts in my contactlist who are

online.

UNKNOWN_OR_PENDINGAUTH_FRIENDS
This group contains contacts in my contactlist who have not yet

authorized me.

RECENTLY_CONTACTED_USERS
This group contains contacts I have conversed with recently,

including non-friends.

USERS_WAITING_MY_AUTHORIZATION
This group contains contacts who are awating my response to an

authorisation request, including non-friends.

USERS_AUTHORIZED_BY_ME
This group contains all contacts I have authorised, including non-

friends.

USERS_BLOCKED_BY_ME
This group contains all contacts I have blocked, including non-

friends.

UNGROUPED_FRIENDS
This group contains all contacts in my contactlist that do not

belong to any custom group.

CUSTOM_GROUP This group type is reserved for user-defined groups.

FILETRANSFER object
File transfer objects are for monitoring purposes only. No alters/actions via API are currently allowed with these objects.

File transfers cannot be initiated nor accepted via API commands.

Values of all the properties can be accessed with GET FILETRANSFER <id> <property_name> commands.

Refer to SEARCH FILETRANSFERS and SEARCH ACTIVEFILETRANSFERS for getting lists

ofFILETRANSFER objects in the system.

Properties:

 TYPE – possible values are:

o INCOMING – file transfer object from receiving side.

o OUTGOING – file transfer object from transmitting side.

 STATUS – current status of the object. Possible values are:

o NEW – initial state of a file transfer. For sender, the status proceeds to WAITING_FOR_ACCEPT.

o WAITING_FOR_ACCEPT – status set for sender until receiver either accepts or cancels the transfer.

o CONNECTING – is set for both parties after remote user accepts the file transfer.

o TRANSFERRING – is set at the start of the file transfer.

o TRANSFERRING_OVER_RELAY – set when no direct connection between sender and receiver could be established over the

network. Analogous to TRANSFERRING.

o PAUSED – this status is currently unused.

o REMOTELY_PAUSED – this status is also currently unused.

o CANCELLED – file transfer has been locally cancelled. Remote user status is set

to FAILED andFAILURE_REASON to REMOTELY_CANCELLED.

o COMPLETED – file transfer was completed.

o FAILED – file transfer failed to complete. Cause of the failure can be seen in FAILUREREASON.

 FAILUREREASON – set when STATUS is set to FAILED.

o SENDER_NOT_AUTHORIZED – It is only possible to transfer files between users who have authorized each-other. As initiating

file transfers to remote users who have not authorized the sender is currently blocked by UI, this FAILUREREASON appears to

be unused.

o REMOTELY_CANCELLED – set when remote user has cancelled the transfer.

o FAILED_READ – read error on local machine.

o FAILED_REMOTE_READ – read error on remote machine.

o FAILED_WRITE – write error on local machine.

o FAILED_REMOTE_WRITE – write error on remote machine.

o REMOTE_DOES_NOT_SUPPORT_FT – Skype client of the receiver does not support file transfers.

o REMOTE_OFFLINE_FOR_TOO_LONG – the recipient of the proposed file transfer is not available (offline for longer than 7

days).

 PARTNER_HANDLE – remote user’s skypename.

 PARTNER_DISPNAME – remote user’s display name.

 STARTTIME – Unix timestamp of when the transfer was started.

 FINISHTIME – while transmission is in progress the value is updated with estimated time of completion (0 when no estimation can

be given). When transmission is finished, the value is set to the timestamp of completion/failure.

 FILEPATH – full path of the file being read or written in local file system. Includes filename and extension. *FILENAME – filename

(and extension) without path. This is also seen by the receiver before accept (default file name, from sender).

 FILESIZE – file size, 64-bit numeric.

 BYTESPERSECOND – transfer speed during file transfer. Becomes 0 after transfer is completed, failed or aborted.

 BYTESTRANSFERRED – current nr. of bytes transferred (progress), 64-bit numeric.

Example:
//---

// Sender initiates file transfer from UI

// Note that the file name in notification message is not enclosed in quotes.

<- FILETRANSFER 982 TYPE OUTGOING

<- FILETRANSFER 982 PARTNER_HANDLE Test2

<- FILETRANSFER 982 PARTNER_DISPNAME Test2

<- FILETRANSFER 982 FILEPATH C:\Stuff\This is test file.mp3

<- FILETRANSFER 982 FILENAME This is test file.mp3

<- FILETRANSFER 982 STATUS NEW

<- FILETRANSFER 982 FILESIZE 0

<- FILETRANSFER 982 STARTTIME 1174558044

<- FILETRANSFER 982 FINISHTIME 0

<- FILETRANSFER 982 BYTESPERSECOND 0

<- FILETRANSFER 982 BYTESTRANSFERRED 0

<- FILETRANSFER 982 FILESIZE 2193720

<- FILETRANSFER 982 STATUS WAITING_FOR_ACCEPT

//---

// Remote user receives incoming file notification

<- FILETRANSFER 1250 TYPE INCOMING

<- FILETRANSFER 1250 PARTNER_HANDLE Test

<- FILETRANSFER 1250 PARTNER_DISPNAME Test

<- FILETRANSFER 1250 FILENAME This is test file.mp3

<- FILETRANSFER 1250 STATUS NEW

<- FILETRANSFER 1250 STARTTIME 1174644373

<- FILETRANSFER 1250 FINISHTIME 0

<- FILETRANSFER 1250 BYTESPERSECOND 0

<- FILETRANSFER 1250 BYTESTRANSFERRED 0

//---

// Remote user accepts the file from UI and starts receiving

<- FILETRANSFER 1250 FILEPATH C:\test\This is test file.mp3

<- FILETRANSFER 1250 STATUS CONNECTING

<- FILETRANSFER 1250 STATUS TRANSFERRING

<- FILETRANSFER 1250 BYTESTRANSFERRED 262454

<- FILETRANSFER 1250 BYTESPERSECOND 307806

<- FILETRANSFER 1250 BYTESTRANSFERRED 580110

<- FILETRANSFER 1250 FINISHTIME 1174644526

<- FILETRANSFER 1250 BYTESPERSECOND 526959

<- FILETRANSFER 1250 BYTESTRANSFERRED 1316372

<- FILETRANSFER 1250 FINISHTIME 1174644523

<- FILETRANSFER 1250 BYTESPERSECOND 613776

<- FILETRANSFER 1250 BYTESTRANSFERRED 2103782

<- FILETRANSFER 1250 BYTESPERSECOND 0

<- FILETRANSFER 1250 BYTESTRANSFERRED 2193720

<- FILETRANSFER 1250 STATUS COMPLETED

//---

// Sender receives notification that the file has been accepted and starts

sending

<- FILETRANSFER 982 STATUS CONNECTING

<- FILETRANSFER 982 STATUS TRANSFERRING

<- FILETRANSFER 982 BYTESTRANSFERRED 262454

<- FILETRANSFER 982 BYTESPERSECOND 308104

<- FILETRANSFER 982 BYTESTRANSFERRED 580110

<- FILETRANSFER 982 FINISHTIME 1174558198

<- FILETRANSFER 982 BYTESPERSECOND 510987

<- FILETRANSFER 982 BYTESTRANSFERRED 1296182

<- FILETRANSFER 982 FINISHTIME 1174558195

<- FILETRANSFER 982 BYTESPERSECOND 606237

<- FILETRANSFER 982 BYTESTRANSFERRED 2083592

<- FILETRANSFER 982 BYTESPERSECOND 0

<- FILETRANSFER 982 FINISHTIME 0

<- FILETRANSFER 982 STATUS CONNECTING

<- FILETRANSFER 982 BYTESTRANSFERRED 2193720

<- FILETRANSFER 982 FINISHTIME 1174558195

<- FILETRANSFER 982 STATUS COMPLETED

Version

Protocol 7 (API version 3.0)

Managing object properties

Three commands are available for retrieving and modifing object properties and general parameters:

 GET – general request command to retrieve object properties and general parameters

 SET – to set object properties and modify general parameters

 ALTER – to alter or perform an action with an object

General syntax

 GET USER <username> property

| CALL <id> property

| MESSAGE <id> property

| CHAT <id> property

| CHATMESSAGE <id> property

| VOICEMAIL <id> property

 SET USER <username> property <value>

| CALL <id> property <value>

| MESSAGE <id> property <value>

| CHAT <id> property <value>

| CHATMESSAGE <id> property <value>

| VOICEMAIL <id> property <value>

See the corresponding object information for available properties and property values:

 CALL object

 USER object

 PROFILE object

 CHAT object

 CHATMESSAGE object

 VOICEMAIL object

 APPLICATION object

This section contains the commands for managing object properties. Note that:

 The GET MESSAGE command is deprecated and has been replaced by the GET CHATMESSAGE command.

 Commands for the APPLICATION object are described in the APPLICATION object information.

GET USER
This command returns property values for a specified user.

Syntax

GET USER <username> property

Response

USER <username> property <value>

Parameters

 <username> – Skype username to retrieve property

 property – property name. Refer to the USER object information for list of properties.

Version

Protocol 1

Errors

 ERROR 7 GET: invalid WHAT

Object name missing or misspelled

 ERROR 10 Invalid prop

ID and/or property missing or misspelled.

 ERROR 8 invalid handle

USERNAME missing or includes a not permitted character . Note: The GET USER <target> ONLINESTATUScommand returns

the response OFFLINE unless the current user is authorized by the target user to see his/her online status.

Example
-> GET USER pamela FULLNAME

<- USER pamela FULLNAME Jane Doe

SET USER
Syntax

SET USER <target> ISAUTHORIZED TRUE|FALSE – allow/disable target to see current user’s userstatus

SET USER <target> ISBLOCKED TRUE|FALSE – block/unblock target user

SET USER <target> BUDDYSTATUS 1 – remove target from contactlist

SET USER <target> BUDDYSTATUS 2 <message> – add target into contactlist and ask authorization with

message

GET CALL
This command returns property values for a specified call. See GET CALL command reference for more details.

GET CHAT
This command returns property values for a specified chat.

Syntax

GET CHAT <chat_id> property

Response

CHAT <chat_id> property <value>

Parameters

 <chat_id> – chat identifier;

 property – property name.

Available properties

are: NAME , TIMESTAMP , ADDER , STATUS , POSTERS , MEMBERS , TOPIC ,CHATMESSAGES , ACTIVEMEMBERS , FRIENDL

YNAME . See CHAT object description for detailed info.

Version

Protocol 3

Errors

 ERROR 7 GET: invalid WHAT

Object name missing or misspelled.

 ERROR 105 invalid chat name

Errorin the CHATNAME parameter.

 ERROR 106 Invalid PROP

Property name missing or misspelled.

Example
-> GET CHAT #bitman/$jessy;eb06e65635359671 NAME

<- CHAT #bitman/$jessy;eb06e65635359671 NAME #bitman/$jessy;eb06e65635359671

GET CHATMESSAGE
This command returns property values for a specified chat message.

Syntax

GET CHATMESSAGE <id> property

Response

CHATMESSAGE <id> property <value>

Parameters

 <id> – chat message ID;

 property – property name.

Available properties

are: CHATNAME , TIMESTAMP , FROM_HANDLE , FROM_DISPNAME , TYPE , USERS ,LEAVEREASON , BODY , STATUS . Refer

to the CHATMESSAGE object information for more detail.

Version

Protocol 3

Example
-> GET CHATMESSAGE 60 CHATNAME

<- CHATMESSAGE 60 CHATNAME #bitman/$jessy;eb06e65631239671

Errors

 ERROR 7 GET: invalid WHAT

Object name missing or misspelled.

 ERROR 14 Invalid message id

Chat message ID contains not permitted symbols (only numeric are permitted)

 ERROR 15 Unknown message

Unknown chat message ID

 ERROR 16 Invalid PROP

Property name missing or misspelled

GET MESSAGE
This command returns property values for a specified message. This command is deprecated since protocol 3, and was

replaced by the GET CHATMESSAGE command.

Syntax

GET MESSAGE <id> property

Parameters

 <id> – chat message ID;

 property – property name.

Availableproperties are: TIMESTAMP (UNIX timestamp) , PARTNER_HANDLE , PARTNER_DISPNAME ,CONF_ID (not

used) , TYPE , STATUS , FAILUREREASON (numeric) , BODY . Refer to the MESSAGEobject information for more detail.

Version

Protocol 1, deprecated in protocol 3

Errors

 ERROR 7 GET: invalid WHAT

Object name missing or misspelled.

 ERROR 14 Invalid message id

ID includes other than numeric characters.

 ERROR 15 Unknown message

Message with specified ID does not exist in current user’s message history.

 ERROR 16 Invalid prop

Property name missing or misspelled.

Example
-> GET MESSAGE 159 TYPE

<- MESSAGE 159 TYPE TEXT

GET APPLICATION
For information about the GET APPLICATION command, refer to the APPLICATION objectinformation.

Managing general parameters

Use GET and SET commands to manage the general variables.

GET SKYPEVERSION
Syntax

GET SKYPEVERSION

Response

SKYPEVERSION <version>

Version

Protocol 1

Example
-> GET SKYPEVERSION

<- SKYPEVERSION 1.3.0.28

GET CURRENT USER
This command gets the username for the currently logged in user.

Syntax

GET CURRENTUSERHANDLE

Response

CURRENTUSERHANDLE <username>

Version

Protocol 1

GET USERSTATUS
This command queries or modifies user visiblity for the current user.

Syntax

GET USERSTATUS

SET USERSTATUS <value>

Response

USERSTATUS <value>

Parameters

<value> – new userstatus. Possible values:

 UNKNOWN

 ONLINE – current user is online

 OFFLINE – current user is offline

 SKYPEME – current user is in “Skype Me” mode (protocol 2).

 AWAY – current user is away.

 NA – current user is not available.

 DND – current user is in “Do not disturb” mode.

 INVISIBLE – current user is invisible to others.

 LOGGEDOUT – current user is logged out. Clients are detached.

Version

Protocol 1

Errors

 ERROR 28 Unknown userstatus

Status value is incorrect or misspelled

Example
-> SET USERSTATUS OFFLINE

<- USERSTATUS OFFLINE

<- USERSTATUS OFFLINE

-> SET USERSTATUS xxx

<- ERROR 28 Unknown userstatus

GET PRIVILEGE
Syntax

GET PRIVILEGE user_privilege

Response

PRIVILEGE user_privilege <value>

Parameters

 user_privilege – possible values:

o SkypeOut True or False

o SkypeIn True or False

o VOICEMAIL True or False

Errors

 ERROR 40 Unknown privilege

Privilege name is missing or misspelled

Version

Protocol 1

Example
-> GET PRIVILEGE SkypeOut

<- PRIVILEGE SkypeOut TRUE

-> GET PRIVILEGE SkypeIn

<- PRIVILEGE SkypeIn FALSE

GET PROFILE
This command queries the current user’s profile information.

Syntax:

-> GET PROFILE <profile_property>

<- PROFILE <profile_property> <value>

Refer to PROFILE object for possible values of parameter.

Example:
-> GET PROFILE PSTN_BALANCE

<- PROFILE PSTN_BALANCE 5000

-> GET PROFILE PSTN_BALANCE_CURRENCY

<- PROFILE PSTN_BALANCE_CURRENCY EUR

Version

Protocol 3

GET PREDICTIVE DIALER COUNTRY
This command returns the country code that is currently being used for inventing correct country prefixes

for PSTN numbers (predictive dialing). The country code is returned in ISO2 format.

Syntax:

-> GET PREDICTIVE_DIALER_COUNTRY

<- PREDICTIVE_DIALER_COUNTRY <iso2>

Example:
-> GET PREDICTIVE_DIALER_COUNTRY

<- PREDICTIVE_DIALER_COUNTRY ee

Version

Protocol 7 (API version 3.1)

SET PROFILE MOOD_TEXT
The SET PROFILE MOOD TEXT command changes the mood text for a user.

Syntax

-> SET PROFILE MOOD_TEXT Life is great and then you...

<- PROFILE MOOD_TEXT Life is great and then you...

Version

Protocol 5

SET PROFILE RICH_MOOD_TEXT
This is a “with bells and whistles” version of the SET PROFILE MOOD_TEXT command.

Syntax:

-> SET PROFILE RICH_MOOD_TEXT <text>

<- PROFILE RICH_MOOD_TEXT <text>

<- PROFILE RICH_MOOD_TEXT <text>

<- PROFILE MOOD_TEXT <text>

<- USER <username> RICH_MOOD_TEXT <text>

<- USER <username> MOOD_TEXT <text>

Note that when this property is changed, it is also propagated into the old MOOD_TEXT, with XMLtags stripped.

Corresponding properties of the USER object are updated as well.

When MOOD_TEXT property is set, the RICH_MOOD_TEXT property is automatically cleared.

Example:
//--

// For purpose of bit conservation we omit feedback notifications

SET PROFILE RICH_MOOD_TEXT Smiley: <SS type="smile">:-)</SS>

SET PROFILE RICH_MOOD_TEXT Red text

SET PROFILE RICH_MOOD_TEXT <BLINK>Blinking text</BLINK>

SET PROFILE RICH_MOOD_TEXT Bold text

SET PROFILE RICH_MOOD_TEXT <I>Italics</I>

SET PROFILE RICH_MOOD_TEXT <U>Underlined</U>

SET PROFILE RICH_MOOD_TEXT First line
Second line
Third line

<SS type="smile"></SS> also accepts following smileys:

smile, sad, laugh, cool, surprised, wink, cry, sweat, speechless, kiss, tongueout, blush, wonder, sleepy, snooze, dull,

inlove, talk, yawn, puke, doh, angry, wasntme, party, worry, mmm, nerdy, lipssealed, hi, call, devil, angel, envy, wait,

hug, makeup, giggle, clap, think, bow, rofl, whew, happy, smirk, nod, shake, punch, emo, no, yes, handshake, skype,

heart, brokenheart, mail, flower, rain, sun, time, music, movie, phone, coffee, pizza, cash, muscle, beer, drink, dance,

ninja, star, mooning, finger, bandit, smoke, toivo, rock, headbang, poolparty, swear, bug, fubar, tmi.

You can also get ideas for cute mood messages by looking at what others have done with theirs. To retrieve rich mood

messages of other people, use GET USER RICH MOOD TEXT command.

Version

Protocol 7 (API version 3.0)

GET USER RICH_MOOD_TEXT

Retrieves RICH_MOOD_TEXT of a remote user.

Syntax:

-> GET USER <skypename> RICH_MOOD_TEXT

<- USER <skypename> RICH_MOOD_TEXT <text>

Version

Protocol 7 (API version 3.0)

GET CONNSTATUS (connection)
This command returns the current network connection status.

Syntax

GET CONNSTATUS

Response

CONNSTATUS <value>

Parameters

<value> – possible values:

 OFFLINE

 CONNECTING

 PAUSING

 ONLINE

Version

Protocol 1

Example
-> GET CONNSTATUS

<- CONNSTATUS ONLINE

AUDIO_IN

The GET command returns the current audio input device for Skype.

The SET command assigns a new audio input device for Skype.

Syntax

GET AUDIO_IN

SET AUDIO_IN <device_name>

Response

AUDIO_IN <device_name>

Version

Protocol 1

Note

Setting a device with an empty name selects the Windows default device.

Example
-> GET AUDIO_IN

<- AUDIO_IN SB Audigy 2 ZS Audio [DC00]

AUDIO_OUT

The GET command returns the current audio output device for Skype.

The SET command assigns a new audio output device for Skype.

Syntax

GET AUDIO_OUT

SET AUDIO_OUT <device_name>

Response

AUDIO_OUT <device_name>

Version

Protocol 1

Note

Setting a device with an empty name selects the Windows default device.

Example
-> GET AUDIO_OUT

<- AUDIO_OUT SB Audigy 2 ZS Audio [DC00]

RINGER

The GET command returns the current ringing device for Skype. The SET command assigns a new ringing device for

Skype.

Syntax

GET RINGER

SET RINGER <device_name>

Response

RINGER <device_name>

Version

Skype for Windows 1.3

Note

Setting a device with an empty name selects the Windows default device.

Example
-> GET RINGER

<- RINGER SB Audigy 2 ZS Audio [DC00]

MUTE
This command gets or sets the mute status.

Syntax

GET MUTE

SET MUTE ON|OFF

Response

MUTE ON|OFF

Version

Protocol 1

Notes

If there are currently no active calls (call status INPROGRESS), MUTE is always OFF and settingMUTE ON has no effect.

Example
-> GET MUTE

<- MUTE OFF

// set mute when no call is active - mute remains OFF

-> SET MUTE ON

<- MUTE OFF

SET AVATAR
This command changes the avatar picture for the user profile.

Syntax

SET AVATAR <id> <filePath + fileName>[:idx]

Response

AVATAR <id> <filePath + fileName>

Parameters

 id – avatar ID. This parameter is here for future compatibility purposes. Currently only one avatar is supported, so always set this

parameter to ‘1’.

 filePath – avatar file directory.

 fileName:idx – avatar file may either be image or .skype file format. IDX refers to the content number in .skype file formats

(0,..)

Version

 Skype for Windows 1.3

 .skype files are supported in Skype for Windows 1.4

 Protocol 5 supports changing avatars.

Errors

 ERROR 114 Invalid avatar

Avatar id is missing or invalid

 ERROR 111 File not found

Avatar file specified does not exist

 ERROR 9901 internal error

Wrong type of file (for example an audio file or a document) is set to avatar

Example
-> SET AVATAR 1 C:\Documents and Settings\Administrator\My Documents\My

Pictures\kitten.jpg

<- AVATAR 1 C:\Documents and Settings\Administrator\My Documents\My

Pictures\kitten.jpg

GET AVATAR
This command saves user’s current avatar picture in a file.

Refer to

 GET USER AVATAR command for how to save avatars of other users.

 SET AVATAR command on how to set your own avatar to a picture from a file.

Syntax:

-> GET AVATAR 1 <filename>

<- AVATAR 1 <filename>

The file path given in the parameter must exist. An existing file with the same name will only be overwritten if it’s empty

(file size = 0).

Example:
-> GET AVATAR 1 c:\stuff\test2.jpg

<- AVATAR 1 c:\stuff\test2.jpg

Version

Protocol 7 (API version 3.1)

GET USER AVATAR
This command retrieves remote user’s avatar picture from the picture cache and saves it into a file. Refer

to SET AVATAR command on how to set your own avatar to a picture from a file.

Syntax:

-> GET USER <skypename> AVATAR 1 <filename>

<- USER <skypename> AVATAR 1 <filename>

The file path given in the parameter must exist. An existing file with the same name will only be overwritten if it’s empty

(file size = 0).

Example:
-> GET USER anappo2 AVATAR 1 c:\stuff\userpic.jpg

<- USER anappo2 AVATAR 1 c:\stuff\userpic.jpg

Version

Protocol 7 (API version 3.1)

RINGTONE
The GET command returns the current ringtone file for Skype.

The SET command assigns a new ringtone for Skype.

Syntax

 GET RINGTONE <id>

 SET RINGTONE <id> <filePath + fileName>[:idx]

Response

RINGTONE <id> <filePath + fileName>

Parameters

 id – ringtone id. In the current release, the is always ‘1’

 filePath – ringtone file directory.

 fileName:idx – ringtone file may either be .wav or .skype file format. IDX refers to the content number in .skype file formats

(0,..)

Version

 Skype for Windows 1.3

 .skype files are supported since Skype for Windows 1.4

 Querying ringtone status is supported since Skype for Windows 1.4

Errors

 ERROR 115 Invalid ringtone

Ringtone id is missing or invalid

 ERROR 111 File not found

Ringtone file specified does not exist

Notes

 If the Skype default ringtone is used, the GET command returns its name with no filepath.

 .skype may be used instead of .wav files and can contain multiple contents enumerated by integer IDs (idx).

Example
-> GET RINGTONE 1

<- RINGTONE 1 call_in

-> SET RINGTONE 1 C:/WINDOWS/Media/tada.wav

<- RINGTONE 1 C:/WINDOWS/Media/tada.wav

GET RINGTONE STATUS
This command queries if ringtones are enabled.

Syntax

-> GET RINGTONE <id> STATUS

<- RINGTONE <id> <ON|OFF>

Note that the parameter is there for possible future use and must for now be always set to 1.

SET RINGTONE STATUS
This command enables you to switch ringtone ON/OFF.

Syntax:

*@→ SET RINGTONE STATUS ON|OFF@

*@<- RINGTONE ON|OFF@

Example:
-> SET RINGTONE 1 STATUS OFF

<- RINGTONE 1 OFF

-> GET RINGTONE 1 STATUS

<- RINGTONE 1 OFF

-> SET RINGTONE 1 STATUS ON

<- RINGTONE 1 ON

-> GET RINGTONE 1 STATUS

<- RINGTONE 1 ON

Note that the parameter is there for possible future use and must for now be always set to 1.

Version

Protocol 7 (API version 3.1)

GET VIDEO_IN
This command queries or sets the device to be used in video calls. See GET VIDEO_IN commandreference for more

details.

SET PCSPEAKER
If no speakers are connected to a PC, it is possible to hear incoming Skype calls only when wearing a headset. Use

the SET PCSPEAKER command to switch the PC speaker on or off.

Syntax
-> GET PCSPEAKER

-> SET PCSPEAKER {ON|OFF}

Response
<- PCSPEAKER {ON|OFF}

SET AGC and SET AEC
NB! As of version 3.6 these commands no longer actually function. The API commands are still valid, for backward

compatibility reasons, but turning echo cancellation or microphone gain off programmatically is disabled in the library.

Skype uses automatic gain control (AGC) to adjust microphone level to the volume the user speaks at. Skype uses

automatic echo cancellation (AEC) to eliminate the echo that occurs if a microphone “hears” the other user’s voice on the

loudspeaker.

Important: Disabling these functions can impair call quality and is not recommended in standard implementations.

However, some audio devices have in-built AGC/AEC mechanisms and, in these circumstances, it can be necessary to

deactivate AGC and AEC on Skype. If you disable AGC/AEC on Skype, ensure that the client defaults to enabled if the

audio device is removed.

To query whether AGC and AEC are on:

Syntax
-> GET AGC

-> GET AEC

Response
<- AGC { ON | OFF }

<- AEC { ON | OFF }

To set AGC and AEC on and off:

Syntax
-> SET AGC ON | OFF

-> SET AEC ON | OFF

Response
<- AGC ON | OFF

<- AEC ON | OFF

Error codes
ERROR 569 - GET AEC: target not allowed

ERROR 570 - SET AEC: invalid value

ERROR 571 - GET AGC: target not allowed

ERROR 572 - SET AGC: invalid value

Version

Protocol 5

RESETIDLETIMER
This command resets the idle timer (the one that turns user’s online status to “Away”).

Note that there is currently no way of retrieving actual “Show my away when inactive for X minutes” setting from user

profile. If you want to ensure the user status stays permanently online, it is sufficient to send RESETIDLETIMER every

59 seconds as it is impossible to set the auto-idle timer below 1 minute.

Syntax:

-> RESETIDLETIMER

<- RESETIDLETIMER

Version:

API version 3.2 (protocol 7)

GET AUTOAWAY
Returns the current state of automatic online status switcher.

Syntax:

-> GET AUTOAWAY

<- AUTOAWAY ON

SET AUTOAWAY
Sets the state of automatic online status switcher.

Syntax:

-> SET AUTOAWAY ON|OFF

<- AUTOAWAY ON|OFF

Example:
-> SET AUTOAWAY ON

<- AUTOAWAY ON

-> SET AUTOAWAY OFF

<- AUTOAWAY OFF

-> SET AUTOAWAY BANANA

<- ERROR 53 SET AUTOAWAY invalid value

Notifications

Notifications are sent by Skype if an object changes or if the value of a property is requested with aGET command. Also, if

a property value is changed by a SET command, the change is confirmed with a notification. Notifications occur in the

same manner, whether the related change is initiatied by the Skype UI or by an API client. There are two main types of

notification:

 Object notifications occur when an object is created (for example due to an incoming call or chat), if an object changes, or if a

property is queried.

 Status notifications are broadcast by Skype after an initial connection is made or if a parameter changes. These notifications can be

queried at any time with the GET command.

Object notifications

This section contains the Skype object notifications.

Call notifications

Call notifications are sent on incoming calls or when an active calls changes. Clients can monitor call events to detect

incoming calls and act on them (for example, to answer automatically).

Syntax

CALL <id> property <value>

Parameters

Refer to the CALL object for available properties and property values.
User notifications

User notifications are the most frequent notifications and include last-seen timestamps and user property information.

Syntax

USER <id> property <value>

Parameters

Refer to the USER object for available properties and property values.

Note

User notifications are reported also for users who are not in the contactlist which the client can ignore.
Chat notifications

Chat notification is sent when a chat is created, chat properties or members change, or a new message is posted into chat.

A new message also triggers a chatmessage notification.

Syntax:

CHAT <id> property <value>

Parameters

Refer to the CHAT object for available properties and property values.

In version 3.6 additional notification messages were added on chat window open and close events.

Syntax:

CHAT <id> CLOSED|OPEN

Example:
<- CHAT #anappo2/$anappo;87ba791d4025455c CLOSED

<- CHAT #anappo2/$anappo;87ba791d4025455c OPENED

Chatmessage notifications

Chatmessage notification is sent when a new message arrives. The client can monitor these messages to display received

messages.

Syntax

CHATMESSAGE <id> property <value>

MESSAGE <id> property <value>

Parameters

Refer to the CHATMESSAGE object for available properties and property values.

Notes

The MESSAGE command is deprecated in Protocol 3
Voicemail notifications

Voicemail notification is sent when a new voicemail is received or recorded.

Syntax

VOICEMAIL <id> property <value>

Parameters

Refer to the VOICEMAIL object for available properties and property values.
Application notifications

Application notifications are sent when a new application requests to connect, or when data is sent or received.

Syntax

APPLICATION <appname> property <value>

Parameters

Refer to the APPLICATION object for available properties and property values.

Status notifications

This section contains the Skype status notifications.

Callhistory change notification

This notification occurs when call history changes and needs to be reloaded. This change occurs when the call history or a

selection of it has been deleted.

Syntax

CALLHISTORYCHANGED
Instant message history change

This notification occurs when instant message history changes and needs to be reloaded. It occurs only when all IM

history is deleted.

Syntax

IMHISTORYCHANGED
Contactlist change notification

This notification occurs if a user is added to or deleted from contacts or has authorized the current user as a contact.

Syntax

USER <username> BUDDYSTATUS <status>

Parameters

Refer to the USER object for available status values.

Example
// User has been added to contacts, pending authorisation.

<- USER pamela BUDDYSTATUS 2

// User has authorized current user

<- USER pamela BUDDYSTATUS 3

// User has been deleted from contacts.

<- USER pamela BUDDYSTATUS 1

Contact group change notification

This notification is sent when GROUP USERS changes – when a user comes online or goes offline.

Syntax:

<- GROUP <group_id> NROFUSERS <n>

Example:
<- GROUP 56 NROFUSERS 19

<- USER test ONLINESTATUS OFFLINE

Version

Protocol 7 (API version 3.0)
User status notification

Syntax

USERSTATUS status

Parameters

status – value for user status. Possible values:

 UNKNOWN – no status information for current user.

 ONLINE – current user is online.

 OFFLINE – current user is offline.

 SKYPEME – current user is in “Skype Me” mode (Protocol 2).

 AWAY – current user is away.

 NA – current user is not available.

 DND – current user is in “Do not disturb” mode.

 INVISIBLE – current user is invisible to others.

 LOGGEDOUT – current user is logged out. Clients are detached.

Connection status

Syntax

CONNSTATUS status

Parameters

status – value for connection status. Possible values:

 OFFLINE

 CONNECTING

 PAUSING

 ONLINE

 LOGGEDOUT – current user is logged out.

Current user handle

Syntax

CURRENTUSERHANDLE <username>

Example

CURRENTUSERHANDLE banana
Contact list focus nofication

This notification occurs when contactlist focus changes:

Syntax

 CONTACTS FOCUSED username – when contact gains focus

 CONTACTS FOCUSED – when loses focus

Error codes

Skype sends an error response when it encounters an issue such as incorrect commands or internal inconsistencies. The

error code is a number that uniquely identifies the error condition and the DESC is an optional brief description of the

issue.

Currently the following error codes are defined:

Code Description Possible reasons

1 General syntax error Command missing (e.g. " " sent as command)

2 Unknown command

Command spelled incorrect (e.g. “GRT” send

instead of “GET”)

3 Search: unknown WHAT Search target is missing or misspelled

4 Empty target not allowed &nspb;

5 Search CALLS: invalid target

An unpermitted character (e.g. “!”, “#”, “$” etc.)

was used in the target username.

6 SEARCH MISSEDCALLS: target not allowed e.g. “SEARCH MISSEDCALLS echo123”

7 GET: invalid WHAT Object/property name missing or misspelled

8 Invalid user handle

USERNAME missing or includes a not permitted

character (e.g. “GET USER ! HANDLE”)

9 Unknown user

10 Invalid PROP Property name and/or ID missing or misspelled

11 Invalid call id

Call ID missing or misspelled (must be a numeric

value)

12 Unknown call Nonexistant call ID used

13 Invalid PROP

Returned to command GET CALL id

PARTNER_DISPLAYNAME. Property name

missing or misspelled

14 Invalid message id

GET – Message ID missing or misspelled (must be

a numeric value)

15 Unknown message Nonexistant message ID used in GET command

16 Invalid PROP

Returned to command GET MESSAGE id

PARTNER_DISPLAYNAME. Property name

missing or misspelled

17 (Not in use)

18 SET: invalid WHAT Property name missing or misspelled

19 Invalid call id

Call ID missing or misspelled (must be a numeric

value)

20 Unknown call Nonexistant call ID used

21 Unknown/disallowed call prop

SET CALL value incorrect or misspelled (e.g.

“SETCALL 15 STATUS ONHOL”)

22 Cannot hold this call at the moment Trying to hold a call that is not in progress.

23 Cannot resume this call at the moment

Trying to resume/answer a call that is not in

progress.

24 Cannot hangup inactive call Trying to hang up a call that is not in progress.

25 Unknown WHAT

Property name missing or misspelled (e.g.

“SET CALL15 STATU ONHOLD”)

26 Invalid user handle

Target username missing or includes not permitted

symbols (e.g. "MESSAGE ")

27 Invalid version number

Invalid protocol number (e.g. “PROTOCOL -

12,9”)

28 Unknown userstatus

Unknown or misspelled value for user status (e.g.

“SET USERSTATUS RICH”)

29 SEARCH what: target not allowed

Target is not permitted; e.g.

“SEARCHMISSEDMESSAGES echo123”

30 Invalid message id

SET – Message ID missing or misspelled (must be

a numeric value)

31 Unknown message id Nonexistant message ID used in SET command

32 Invalid WHAT Property missing or misspelled

33 invalid parameter

Unknown or misspelled value for mute (e.g.

“SETMUTE O”)

34 invalid user handle Target username/number missing (e.g. "CALL ")

35 Not connected

36 Not online

37 Not connected

38 Not online

39 user blocked

Destination user is blocked by caller. Also given, if

trying to call to a blocked user

40 Unknown privilege

Privilege is either misspelled or does not exist (e.g.

“GET PRIVILEGE SkypeOut”).

41 Call not active Trying to send DTMF, when call is not active.

42 Invalid DTMF code

Invalid DTMF code is sent. Valid symbols

for DTMFcodes are {0..9,#,*}

43 cannot send empty message

Empty message is tried to sent, e.g.

“MESSAGEecho123”.

50 cannot set device An error occurred when changing audio device

51 invalid parameter Parameter to READY command is not YES or NO

52 invalid parameter

Parameter to HOOK command is not ON or OFF.

NB! HOOK command is no longer supported or

relevant.

53 invalid value

Parameter to SET AUTOAWAY is not ON

or OFF

66 Not connected

Skype is not connected i.e. user status is

“LOGGEDOUT”

67 Target not allowed with SEARCHFRIENDS SEARCH FRIENDS had a parameter

68 Access denied

69 Invalid open what

OPEN command had missing or

misspelled TARGETe.g. “OPEN IN”

70 Invalid handle

OPEN IM parameter USERNAME is missing or

contains not permitted symbols

71 Invalid conference participant NO

Conference participant’s number is either too large

or invalid.

72 Cannot create conference

73 too many participants Conference is initiated to more than 4 people.

74 Invalid key

Key name in BTN_PRESSED or

BTN_RELEASED command is invalid

91 call error Cannot call an emergency number

92 call error The called number is not a valid PSTN number

93 call error Invalid Skype Name

94 call error Cannot call yourself

95 Internal error

Destination user is blocked by caller right after call

initialization

96 Internal error

An outgoing call exists

inROUTING/RINGING/EARLYMEDIA state

97 Internal error Internal error

98 Internal error Internal error

99 Internal error Internal error

100 Internal error Internal error

101 Internal error A call to the destination user is already ongoing

103 Cannot hold Internal error

104 Cannot resume Internal error

105 Invalid chat name Chat name missing or misspelled

106 Invalid PROP

Property name missing or misspelled

for CHAT orCHATMESSAGE

107 Target not allowed with CHATS No parameters allowed to SEARCH CHATS

108 User not contact TRANSFER can only be initiated to contacts

109 directory doesn’t exist

Directory given as a parameter

to TRANSFERcommand does not exist

110 No voicemail capability

User given as a parameter

to VOICEMAIL command doesn’t have voicemail

capability

111 File not found

File given as argument

to SET AVATAR or SETRINGTONE command

doesn’t exist

112 Too many targets

Number of target users

for OPEN FILETRANSFERcommand exceeds

simultaneous filetransfer limit

113 Close: invalid WHAT Invalid argument to CLOSE command

114 Invalid avatar GET or SET AVATAR avatar index invalid

115 Invalid ringtone GET or SET RINGTONE ringtone index invalid

500 CHAT: Invalid chat name given

501 CHAT: No chat found for given chat

502 CHAT: No action name given

503 CHAT: Invalid or unknown action

504 CHAT: action failed

505 CHAT: LEAVE does not take arguments

506

CHAT: ADDMEMBERS: invalid/missing user

handle(s) as arguments

507

CHAT: CREATE: invalid/missing user handle(s)

as argument

508

CHAT: CREATE: opening a dialog to the given

user failed

509 No chat name given

510 Invalid/uknown chat name given

511 Sending a message to chat failes

512 Invalid voicemail id

513 Invalid voicemail object

514 No voicemail property given

515 Assigning speeddial property failed

516

Invalid value given

toISAUTHORIZED/ISBLOCKED

517 Changing ISAUTHORIZED/ISBLOCKEDfailed

518 Invalid status given for BUDDYSTATUS

519 Updating BUDDYSTATUS failed

520 CLEAR needs a target

521 Invalid/unknown CLEAR target

522 CLEAR CHATHISTORY takes no arguments

523

CLEAR VOICEMAILHISTORY takes no

arguments

524

CLEAR CALLHISTORY: missing target

argument

525

CLEAR CALLHISTORY: invalid handle

argument

526 ALTER: no object type given

527 ALTER: unknown object type given

528 VOICEMAIL: No proper voicemail ID given

529 VOICEMAIL: Invalid voicemail ID given

530 VOICEMAIL: No action given

531 VOICEMAIL: Action failed

532 VOICEMAIL: Unknown action

534 SEARCH GREETING: invalid handle

535 SEARCH GREETING: unable to get greeting

536 CREATE: no object type given

537 CREATE : Unknown object type given.

538 DELETE : no object type given.

539 DELETE : unknown object type given.

540

CREATE APPLICATION : missing of invalid

name.

541 APPLICATION : Operation Failed.

542

DELETE APPLICATION : missing or invalid

application name.

543

GET APPLICATION : missing or invalid

application name.

544

GET APPLICATION : missing or invalid

property name.

545

ALTER APPLICATION : missing or invalid

action.

546

ALTER APPLICATION : Missing or invalid

action

547

ALTER APPLICATION CONNECT: Invalid user

handle

548

ALTER APPLICATION DISCONNECT: Invalid

stream identifier

549

ALTER APPLICATION WRITE : Missing or

invalid stream identifier

550

ALTER APPLICATION READ : Missing or

invalid stream identifier

551

ALTER APPLICATION DATAGRAM : Missing

or invalid stream identifier

552 SET PROFILE : invalid property profile given

553

SET PROFILE CALL_SEND_TO_VM : no

voicemail privledge, can’t forward to voicemail.

555 CALL: No proper call ID given

556 CALL: Invalid call ID given"

557 CALL: No action given

558 CALL: Missing or invalid arguments

559 CALL: Action failed

560 CALL: Unknown action

561 SEARCH GROUPS: invalid target"

562 SEARCH GROUPS: Invalid group id

563 SEARCH GROUPS: Invalid group object

564 SEARCH GROUPS: Invalid group property given

569 GET AEC: target not allowed"

570 SET AEC: invalid value"

571 GET AGC: target not allowed"

572 SET AGC: invalid value"

9901 Internal error

Skype URI handler
Although not part of the Skype Desktop API, Skype 1.4 and later include a set of useful commands which can be initiated

using the skype URI handler.

General syntax
SKYPE_URI = "skype:" [targets] ["?" query] ["#" fragment]

targets = 1* (target / ";")

target = identity / PSTN

identity = skypename / alias

skypename = 1*(ALPHA / DIGIT / "." / ",")

skypenames = 1*(skypename / ";")

alias = ... ; see ["TechGroup/DataFormats"]

; unicode chars are in UTF-8 and % encoded; see RFC3987 uchar mapping

PSTN = "+" (DIGIT / ALPHA) *(DIGIT / ALPHA / "-") ; supports

+800-FLOWERS

query = action [*("?" term "=" conditon)]

term = 1*ALPHA

condition = 1*unserved ; to be clarified

fragment = 1*unserved ; to be clarified

Skype for Windows 1.4 version handles the following
skype: ; focus / open skype UI

skype:[targets] ; take default double-click

action on contact

skype:[targets]?call ; call to target(s): can be

skypename, alias or PSTN

skype:[skypenames]?chat ; start chat/multichat with

skypename(s)

skype:[skypename]?voicemail ; leave voicemail to skypename

skype:[skypename]?add ; add skypename to contactlist;

show authorization dialog

skype:[skypename]?add&displayname=customname ; add contact dialog with pre-

set displayname

skype:[skypenames]?sendfile ; open sendfile dialog to

skypenames

skype:[skypename]?userinfo ; show info (profile) for

[username]

skype:[skypename]?chat&topic=[topic] ; opens chat with pre-set topic;

skype:?chat&id=[id][#time] ; open existing multichat with

[id];

; time: YYYY-MM-DDThh:mm:ssTZ / YYYY-MM-DDZhh:mm:ss

Examples

 [skype:echo123 skype:echo123]

 [skype:echo123?call skype:echo123?call]

 [skype:echo123?chat skype:echo123?chat]

 [skype:echo123?chat&topic=Test skype:echo123 chat with pre-set topic]

 [skype:echo123?add&displayname=Skype%20Test%Call skype:echo123 add contact as Skype Test Call]

Notice that there is no “//” in skype: URI – skype://echo123 does not work.

Release Notes

Skype 4.0 GOLD Release Notes
Date: 2009-01-22

While the Windows 4.0 client release does not bring any new features to the Desktop API, it does present a major UI

overhaul. As a result, some parts of the Desktop API that had dependencies in the UI are no longer functional – the

corresponding UI parts having been removed or not yet implemented. We have tried to keep the list of nonfunctional

Desktop API commands down to minimum. Also note that the commands do not fail with error messages – they just have

no effect in the UI.

Here is the list:

Skype Alert Events

The entire custom events system is currently unavailable.

 CREATE EVENT – unavailable.

 DELETE EVENT – unavailable.

Skype Custom Menus

In 3.x the create menu command had four different contexts, where the custom menu Items could be created

in: CALL, MYSELF, TOOLS, CONTACT. Currently only TOOLS context remains functional.

*

 CREATE MENU_ITEM <ID> CONTEXT CALL CAPTION <text> – unavailable.

 CREATE MENU_ITEM <ID> CONTEXT MYSELF CAPTION <text> – unavailable.

 CREATE MENU_ITEM <ID> CONTEXT CONTACT CAPTION <text> – unavailable.

Send Contacts

 OPEN SENDCONTACTS – unavailable.

Skype 3.6. Release Notes

Date: 2007-10-03

New notification messages:

 CHAT <id> CLOSED|OPEN – notifications added on chat window open and close events. See Chat notifications section for more

information.

New commands:

 GET WINDOWSTATE – returns current state of the Skype main window.

 SET WINDOWSTATE – sets state of the Skype main window.

Varia:

As of ths version various commands no longer accept “¤”, “€” or “£” symbols in their parameters. Instead, ERROR 8

Invalid user handle error message is generated in response. Following commands are affected:

 CALLVOICEMAIL <handle>

 GET USER <handle> HANDLE

 SEARCH CALLS <handle>

 SEARCH CHATMESSAGES <handle>

 SEARCH MESSAGES <handle>

Skype 3.5.0.202 Release Notes

Date: 2007-08-07

New VOICEMAIL object properties:

 INPUT

 OUTPUT

 CAPTURE_MIC

VOICEMAIL audio stream access commands:

 ALTER VOICEMAIL SET_INPUT

 ALTER VOICEMAIL SET_OUTPUT

 ALTER VOICEMAIL SET_CAPTURE_MIC

Skype 3.5 Release Notes

Date: 2007-07-02

New protocol version: 8

 New CALL STATUS enumerator – WAITING_REDIAL_COMMAND.

 New CALL STATUS enumerator – REDIAL_PENDING.

 New SMS FAILUREREASON enumerator – NO_SENDERID_CAPABILITY.

 Sending chat messages and CHAT CREATE commands may now fail with a new error code: 615, “CHAT: chat with given contact is

disabled”.

 When the UI language is set via custom language file, GET UI_LANGUAGE will return “xx” (used to return “en” in versions prior to

3.5).

Skype 3.2 Release Notes

Date: 2007-04-30

New commands:

 OPEN LIVETAB

 RESETIDLETIMER

New USER object property:

 IS_VOICEMAIL_CAPABLE

Skype 3.1 Release Notes

Date: 2007-04-05

New commands:

 GET AVATAR

 SET AVATAR

 GET USER AVATAR

 GET PREDICTIVE_DIALER_COUNTRY

 GET CONTACTS FOCUSED

 GET RINGTONE STATUS

New CALL property – TARGET_IDENTITY.

New CHAT property – TOPICXML.

Error reporting changed for SET VIDEO_IN command.

Skype 3.0 Release Notes

New protocol version: 7

Support for custom menus

Refer to Custom Menu Items section for more information.

Support for custom events

Refer to Skype Alert Events for more information.

Call transfer API

New commands and object properties to support call transfers:

 GET CALL CAN_TRANSFER

 ALTER CALL TRANSFER

New CALL statuses:

 TRANSFERRING

 TRANSFERRED

New call transfer related CALL properties:

 TRANSFER_STATUS

 TRANSFER_ACTIVE

 TRANSFERRED_BY

 TRANSFERRED_TO

File transfer object

Refer to FILETRANSFER object section for more information.

Notification changes

 USER LASTONLINETIMESTAMP – events about its change are no longer sent to clients, the property can still be queried.

 GROUP NROFUSERS_ONLINE – events about its change are no longer sent to clients, the property can still be queried.

 GROUP USERS – events about its change are no longer sent to clients – instead GROUP NROFUSERS event is generated; if you get

an event on NROFUSERS you can assume the GROUP USERS has changed.

 GROUP NROFUSERS – is now only sent when GROUP USERS property changes.

Richtext mood messages

New property RICH_MOOD_TEXT was added to PROFILE and USER objects.

New moodmessage related commands are:

 SET PROFILE RICH_MOOD_TEXT

 GET USER RICH_MOOD_TEXT

Wallpapers

New GET WALLPAPER and SET WALLPAPER commands. Refer to

[#COMMAND_UI_WALLPAPERS GET/SET WALLPAPERS] section.

Public chats

New CHATMEMBER object.

New CHAT object properties:

 MEMBEROBJECTS

 PASSWORDHINT

 GUIDELINES

 OPTIONS

 DESCRIPTION

 DIALOG_PARTNER

 ACTIVITY_TIMESTAMP

 TYPE

 MYSTATUS

 MYROLE

 BLOB

 APPLICANTS

New CHATMESSAGE properties:

 EDITED_BY

 EDITED_TIMESTAMP

 IS_EDITABLE

 OPTIONS

 ROLE

Modified CHATMESSAGE property TYPE enumerations for PROTOCOL 7:

 POSTEDCONTACTS

 GAP_IN_CHAT

 SETROLE

 KICKED

 SETOPTIONS

 KICKBANNED

 JOINEDASAPPLICANT

 SETPICTURE

 SETGUIDELINES

The BODY property of a CHATMESSAGE object is now read-write. Refer to SET CHATMESSAGEBODY command for

more information.

New CHATMEMBER related commands are:

 ALTER CHATMEMBER SETROLETO

 ALTER CHATMEMBER CANSETROLETO

New CHAT commands:

 ALTER CHAT JOIN

 ALTER CHAT KICK

 ALTER CHAT KICKBAN

 ALTER CHAT DISBAND

 ALTER CHAT ENTERPASSWORD

 ALTER CHAT CLEARRECENTMESSAGES

 ALTER CHAT ACCEPTADD

 ALTER CHAT SETOPTIONS

 ALTER CHAT SETGUIDELINES

 ALTER CHAT SETALERTSTRING

 ALTER CHAT SETPASSWORD

 CHAT FINDUSINGBLOB

 CHAT CREATEUSINGBLOB

 ALTER CHAT SETDESCRIPTION

CHAT CREATE no longer requires usernames, if you provide no usernames a general multichat is created.

Change in text value parsing: all texts which include whitespace must be quoted.

Skype 2.6 Release notes

Voice API

New CALL object properties:

 INPUT

 OUTPUT

New Voice API related commands:

 GET CALL <INPUT|OUTPUT>

 GET CALL CAPTURE_MIC

 ALTER CALL SET_<INPUT|OUTPUT>

 ALTER CALL SET_CAPTURE_MIC

Refer to Voice Streams section for more information.

SMS API

New object: SMS

New SMS related commands:

 GET SMS CHUNK

 GET SMS CHUNKING

 SET SMS SEEN

 SET SMS BODY

 SET SMS REPLY_TO_NUMBER

 SET SMS TARGET_NUMBERS

 CREATE SMSS

 ALTER SMS SEND

 DELETE SMSS

 SEARCH SMSS

 SEARCH MISSEDSMSS

 GET PROFILE SMS_VALIDATED_NUMBERS

Shared contact groups

New GROUP object types, (protocol 6):

 SHARED_GROUP

 PROPOSED_SHARED_GROUP

New commands related to shared groups:

 ALTER GROUP SHARE

 ALTER GROUP ACCEPT

 ALTER GROUP DECLINE

Refer to ALTER GROUP SHARE command for more information.

Call cost information

New CALL object properties

 RATE

 RATE_CURRENCY

 RATE_PRECISION

Refer to Call cost information section for more information.

Chat Bookmarks

New CHAT object property: BOOKMARKED

New commands related to shared groups:

 ALTER CHAT BOOKMARKED

 ALTER CHAT UNBOOKMARK

Refer to ALTER CHAT BOOKMARKED section for more information.

Various new object properties:

 New USER object property: NROF_AUTHED_BUDDIES

 New CALL object property: FORWARDED_BY

 New CALL object property: VAA_INPUT_STATUS

Various new commands:

 SET SILENT_MODE

 SEARCH MISSEDVOICEMAILS

 GET PROFILE IPCOUNTRY – refer to PROFILE object for more information.

GET_CONFERENCE_PARTICIPANT_COUNT now reports the number of conference call participants more correctly.

VOICEMAIL command enters the deprecation process and is replaced by new command:CALLVOICEMAIL

PONG reply to PING is now asynchronous.

Skype 1.4 Release Notes

Date: 2005-09-16

Changes and fixes:

 Support for application to application messaging

 Set profile properties

 Support for call forwarding

 Extended support to open client windows

 New user object properties (mood text, alias)

 Extended support for ringtones

 Support for Skype URI handler commands

 Support for contact focused notifications

Skype 1.3.0.42 release notes

Date: 2005-06-11

Changes and fixes:

 added: Protocol 5

 Support for voicemails: VOICEMAIL, OPEN VOICEMAIL, ALTER VOICEMAIL, SEARCH VOICEMAILS

 Support for chat handling: CHAT CREATE, OPEN CHAT, ALTER CHAT, SEARCH *CHATS

 Support for authorizations: SEARCH USERSWAITINGMYAUTHORIZATION, SET USER, ISAUTHORIZED, ISBLOCKED,
BUDDYSTATUS

 Support for deleting history: CLEAR CHATHISTORY, VOICEMAILHISTORY, CALLHISTORY

 Set ringing device: SET/GET RINGER

 Extended DTMF support: SET CALL DTMF

 Initiate filetransfer: OPEN FILETRANSFER

 Assign speeddial: USER SPEEDDIAL

 Change ringtones: GET/SET RINGTONE

 Change avatar: SET AVATAR

 Minimize Skype window: MINIMIZE

 bugfix: conference call bugs resolved

Skype 1.2.0.11 release notes

Date: 2005-03-04

Changes and fixes:

 added: Protocol 4

 Support for conferencing: start a conference, add people to conference and being able to get list of conference call participants and

notifications about these

 Possible to check SkypeOut balance

 Possible to call speeddial numbers

 Notifications about changing audiodevices

 Notification about deleting IM history

 Changed language and country to return ISO list instead of countrynames – new behaviour: from protocol 4 language and country

values are prefixed by ISO codes, for example 'GET USER echo123 COUNTRY' => 'USER echo123 COUNTRY ee
Estonia'

 Notification about shutting down Skype

 Support for SkypeIn

 Registry key to disable one second timeout for debugging

 Possibility to add userhandle to OPEN ADDAFRIEND

 Support for command-id (#1 SET xxx)

 CALL FAILUREREASON 1 – documentation error, changed to say “Misc error”

 change: if CHATMESSAGE property is missing, command 'SET CHATMESSAGE id' gives the same error for both existing and

nonexisting id

 change: PSTN_STATUS gives error string returned from gateway

 change: HASCALLEQUIPMENT always returns TRUE

 change: Up/down via phone api autoexpand contactlist groups

 bugfix: "AUDIO IN" and "AUDIO OUT" commands do nor read double byte driver names correctly

 bugfix: BTN_PRESSED E fails with error 71 invalid key

 bugfix: Muting microphone in UI not reflected in API

 bugfix: Conference to more than 4 participants causes “Range check” errors

 bugfix: IMHISTORYCHANGED doesn’t work

 bugfix: SET MUTE ON returns always MUTE OFF

 bugfix: Cannot call SkypeOut contacts using speeddial

 bugfix: No response to empty CALL (should return ERROR 34 invalid user handles

 bugfix: Skype access control does not deny access to a device

 bugfix: No notification if the user changes audio device

Skype 1.1.0.61 release notes

Date: 2005-01-12

Changes and fixes:

 added: Protocol 3

 change: API – now allows one ongoing search per client only. Attempting to issue new search before receiving results of a previous

one results in error 72.

 change: CHAT and CHATMESSAGE properties

 bugfix: API showed previous user’s calls and messages

 bugfix: Fixed confusing syntax if protocol 3 is used

 bugfix: SEARCH MESSAGES does not return CHATMESSAGES value anymore if protocol 2 is used

 bugfix: API displayed only first word of message or fullname

 bugfix: In access control list only one program’s permission was remembered

 bugfix: Multichat message IDs were not returned

 bugfix: Problems with connecting for older applications

 bugfix: Fixed API exceptions if Skype is used on two Windows accounts simultaneously

 bugfix: On Windows98/ME some dll files were shown to use Skype instead of the respective application

 bugfix: Sometimes API didn’t return 'BUDDYSTATUS 1' messages

