Proceedings of Australasian Conference on Robotics and Automation, 3-5 Dec 2012, Victoria University of Wellington, New Zealand.

Skype: a communications framework for robotics

Peter Corke, Kyran Findlater and Elizabeth Murphy

Abstract— This paper describes an architecture for robotic
telepresence and teleoperation based on the well known tools
ROS and Skype. We discuss how Skype can be used as a
framework for robotic communication and can be integrated
into a ROS/Linux framework to allow a remote user to not
only interact with people near the robot, but to view maps,
sensory data, robot pose and to issue commands to the robot’s
navigation stack. This allows the remote user to exploit the
robot’s autonomy, providing a much more convenient naviga-
tion interface than simple remote joysticking.

I. INTRODUCTION

Robotic telepresence and teleoperation is an increasingly
important application for robots to meet everyday needs in
security, business meetings, health and aged care [1], and
numerous other domains. It has been shown that the ability
for a remote user to move in the local environment enhances
the quality of the interaction for both parties [2]. Already
there are a number of products on the market aimed at these
applications.

To date most work in teleoperation has been focussed on
applications such as bilateral control of robot manipulators
for underwater, space and even health applications where
the challenges are around motion fidelity, haptic feedback
and dealing with communications delay. Mobile robots are
increasingly common and have relatively simple motion and
control requirements yet creating a mobile telepresence robot
remains challenging.

Mobile robot telepresence requires both mobile robot
control and telepresence capability. In a short space of time
ROS [3] has become ubiquitous for mobile robot control
by providing “out of the box” sensor interfaces and robust
navigation capability. The dominant felepresence tool is
Skype, a free tele- and video-conferencing software package
that also provides features such as chat, file exchange and
desktop sharing. In this paper we describe how these two
very different technologies can be integrated to create pow-
erful telepresence robot systems. Skype’s ubiquity on mobile
devices makes it a sufficient tool to interact with a remote
user via a robot from anywhere on the planet.

While robot navigation, remote control and video confer-
encing are all well known there is a gap in their integration.
Remote control using basic motion commands like forward
and turn is challenging in practice and not very efficient. Part
of the problem is that a monocular image with limited field-
of-view gives a limited sense of the immediate environment,
particularly if that environment is unfamiliar or very busy.

With the CyPhy Lab, School of Electrical Engineering and
Computer Science, Queensland University of Technology, Australia
firstname.lastname@qut.edu.au

Fig. 1.

The Guiabot showing Skype interface on the top screen.

A more important problem comes from lack of situational
awareness in an unfamiliar environment — it is easy to get
lost [4]. A map, and our current position with respect to
the map, makes remote operation of the robot much more
productive. ROS provides a robot with an ability to localize
and navigate with respect to a map, so the challenge for
telerobotics is to share the robot’s state with the remote user,
and to accept commands from the user that are referenced
to the map. Integrating Skype with external software is
possible but this raises a technological issue since Skype’s
best known integration tools are for Windows whereas most
robot platforms using ROS run Linux.

This paper describes an architecture that integrates Skype
and ROS to provide a powerful means for remote operation
of robots. We discuss two systems: text chat control using
a standard Skype client; and map-based control using the
Skype development environment (Skypekit). The architecture

Proceedings of Australasian Conference on Robotics and Automation, 3-5 Dec 2012, Victoria University of Wellington, New Zealand.

has been demonstrated on the Adept Guiabot shown in Figure
1 and controlled by remote users in the same building, the
same city or on a different continent.

The remainder of this section provides a discussion of
prior work in telepresence robotics and an introduction to the
aspects of Skype relevant to teleoperation and telepresence.
Section II describes the text chat based architecture and
Section III describes the map-based architecture. Section
IV covers the important topics of security and safety, then
Section V reflects on the lessons learnt, portability issues
and discusses future work, and finally Section VI presents
conclusions. Our source code is available from http://
tiny.cc/cyphy/software.

A. Telepresence robots

There are a large number of mobile robot telepresence
systems spanning a significant price range. At the low end
are hobbyist or DIY projects which can be built for less
than $500. At the high end are commercially produced
telepresence robots such as the iRobot AVA [5] (not for
sale at this time) or the Anybots QB [6] which currently
sells for approximately $10,000. It comprises a mobile base
with extendible ‘neck’ for a head which has a small LCD
screen and two cameras — one for telepresence and human
interaction and another to assist with driving. The Anybots
system does not use Skype, but three of the hobby robots do.
The sophistication and complexity of these systems varies
considerably but the common feature is basic teleoperation
commands by which the remote user can move the robot
forward, reverse it, and turn left or right. Most commonly
these commands are keyboard button presses.

The hobbyist or DIY telepresence robots are interesting
examples of what can be done. Johny Lee’s low-cost robot
[71, [8] utilises a netbook mounted on top of an iRobot Create
platform. The netbook communicates with the base via a
serial link to send drive and docking commands and also
to monitor battery and sensor state. A UI on the netbook
allows a local user to control the robot and also listens for
drive commands over the internet. This command channel is
in addition to the Skype channel for telepresence, resulting in
increased complexity, lower robustness and potential security
problems. The remote user needs to run a separate network
sender program to connect to the robot.

Sparky, and the newer Sparky Jr. projects [9] are DIY
open source projects utilising netbooks or cut down Mac
mini computers and open source microcontroller boards such
as Make or Arduino to run the motors. The Sparky project
has been running for over 15 years, starting in 1994, and has
a fairly well established open source code base. Skype runs
on board and they use a ’Skype plug-in’ which listens to
Skype, parses incoming text chat commands from the home
user, and sends those along to the motor controller software
which is linked to the Make/Arduino board. The remote user
needs nothing more than the standard Skype client to call and
control the robot.

David Schneider [10] used a similar approach to Johnny
Lee. He fabricated his own moving base which is controlled

by an Arduino microcontroller and which also carries a the
laptop/netbook. He used used C# code by Hari Wiguna [11]
to make use of Skype’s Skype4COM windows-only desktop
API [6] and modified it to send commands to a pan/tilt
camera and also to the mobile robot base. His program parses
text chat messages from Skype and sends single character
commands over a serial link to the motor controller.

B. Skype 101

Most people are familiar with the Skype application for
teleconferencing. Skype is a voice over IP (VOIP) tool that
was created by Niklas Zennstrom and Janus Friis and first
released in 2003 as a Windows application. MacOS support
came in 2006 and Linux in 2008, and it is also supported a
wide range of mobile devices (i0S, Android and Blackberry).
The Skype protocols are proprietary but it uses open video
codecs VP7 and VP8 from On2 Technologies (now owned
by Google) and H264 for HD video. The main audio codec
is the Skype-developed SILK. Skype has nearly 700 million
users and since 2011 is owned by Microsoft.

Skype clients use peer-to-peer' communications as a dis-
tributed database lookup service for call initiation. Supern-
odes form an overlay network that help connect all Skype
clients together and also to the Skype authentication server.
Any Skype client outside a firewall will serve as a supernode
(this can be disabled in modern versions of Skype), and other
Skype owned supernodes are dotted around the planet. The
Skype login process involves the client authenticating their
user name and password with the Skype login server which
holds all user names and passwords.

Skype supports interaction with external programs running
on the same computer but this is complex, platform specific
and has varied considerably over time. The oldest and most
mature interface is for Windows: Skype4COM is an ActiveX
component that allows control of Skype within an ActiveX
environment. An older open-source Python interface called
Skype4Py is somewhat buggy and the project is no longer
active.

The desktop API (previously called the Public API) pro-
vides a string based interface to control the local Skype
client [12]. Functionality includes call initiation, contact
list lookup, SMS, chat, file transfer. For Linux the API
uses DBUS which is an open message bus system that
allows applications to communicate with one another, and it
underlies the KDE desktop system. DBUS has bindings for
many languages including C++ and Python thus allowing
programs written in those languages to control a Skype
client. For MacOS the API is a Carbon or Cocoa framework
and or AppleScript.

If instead of remote controlling a Skype client we wish
to build Skype capability into our own application we need
to follow a different path. SkypeKit comprises the so-called
run time which is a “headless” Skype client, a background
process that communicates with the Skype network and to

IThe name is derived from Sky peer-to-peer. The peer-to-peer protocols
were originally based on the Kazaa software created by the same developers.

Proceedings of Australasian Conference on Robotics and Automation, 3-5 Dec 2012, Victoria University of Wellington, New Zealand.

« map2CIF

Fig. 2.
client is used and a map can be downloaded from the ROS navstack and
displayed.

Remote user view for the chat-based interface. A standard Skype

which various user-written applications connect via an API
[13]. Language bindings exist for C++, Python and Java?
and this is a good fit with ROS where the most mature APIs
are also C++ and Python. Skypekit has no GUI support but
does perform audio input and output and video input via the
operating system.

For robotics applications the most valuable capability of
Skype is the so-called App2App (application to application)
functionality. This is effectively a named communications
channel between processes running on the computers at
either end of the Skype connection. Processes can exchange
strings or binary datagrams (upto 32kbyte) and these are
multiplexed through the Skype connection. Each process
needs to register the name of the App2App stream, which is
an agreed string, and receives a handle. The sender writes
strings or binary datagrams to the handle and at the receiver
a callback is invoked with the data and the identity of the
App2App channel. Importantly, new App2App streams can
be created dynamically at run time and the number of streams
is effectively unlimited. Message delivery is not guaranteed
and if bandwidth is constrained then message delivery rate
will suffer.

II. CHAT-BASED NAVIGATION

The chat-based navigation system requires only that the
remote user has a standard Skype client, on a desktop or
mobile platform. The user calls the robot, which has a Skype
username and enables video. The user then sees a video
stream from the robot’s navigation or human interaction
camera, and in the latter case can have a voice and video
interaction with people near the robot. This much is standard
“out of the box” Skype.

2The Java binding is embryonic at the time of writing.

goto N Move to the location called N

getmap Send the map using file transfer protocol
where? Report robot’s location

fwd X Move forward X meters

turn X Turn X degrees, positive is to the right

left Turn 90 degrees to the left

right Turn 90 degrees to the right

navcam Select the robot’s navigation camera
usercam Select the robot’s user interaction camera

TABLE 1
SUBSET OF COMMANDS ACCEPTED BY THE ROBOT VIA THE SKYPE
TEXT CHAT INTERFACE.

In addition the user can send text chat commands, listed
in Table I, which are interpreted by a robot-end server
process. The robot responds, via a text chat message, when
the command is complete.

The overall architecture is shown in Figure 3. The robot-
side application is written in Python and incorporate both
the Skypekit and ROS API and acts as a relay between
the two. The program is effectively a daemon or server and
once connected to ROS and logged into Skype it waits for
connections and commands from the user. The robot must be
running the Skypekit runtime, ROS Core and the Navigation
stack (with a previously generated map from the Gmapping
ROS node of the area in which the robot will be operating).

The SkypeKit API uses callbacks to notify the program
about changes in status such as incoming calls or chat
messages. For example if the user types “fwd 5 then
the robot-side server invokes a callback which parses the
command and dispatches an appropriate method to handle
it. The method sends the feedback “Forward command
received” to the user, and sends a goal to the navigation
stack through the ROS topic /goal which causes the robot
to move forward five metres. While moving, the program
monitors the current pose and confirms that the movement
has finished, by sending the feedback “finished moving”
which indicates to the user that the robot has completed
the movement. This is a significantly more useful level of
functionality than sending simple motor commands since
the motion is performed locally and autonomously by the
navigation stack — the full functionality of ROS comes into
play, for instance obstacles are detected and the robot will
stop until the obstacle is removed.

In practice we found that unless the remote user is familiar
with the environment where the robot is operating it is quite
easy to become disoriented or lost. A map is a very useful
tool for the remote user and of course the robot navigation
stack has a map. The handler for the “getmap” chat command
obtains a map from the ROS navigation stack and then uses
Skype’s file transfer capability to push that map to the remote
user as a GIF image. By default the ROS maps are stored
in a 4000 x 4000 pixel image (Scm grid cell size) which is
cropped before sending — typically less than 20% of this
area contains useful information. Figure 2 shows the remote
user’s desktop with the Skype client showing the navigation
camera image, the text chat window, and a map sent by

Proceedings of Australasian Conference on Robotics and Automation, 3-5 Dec 2012, Victoria University of Wellington, New Zealand.

= |
=N

Robot-end User-end

|
Cameras |
|
|
|
: Camera
chat CHAT |
dispatcher I |
Skypekit I
/amcl_pose | CHARL runtime
-
FILETRANSFER
Navstack 1
move |
|
/goal turn etma
AMCL) goal-e left : \?vhere?p L
gmapping right) | J
) I 1
Posix shared I Skype client il
memory | / S
R " Y
¢ | |
| t
I @ “(
video ! N
. l i
renderer ! Pushed map file
|
|
|

Fig. 3.

3

the “getmap” command. The “where?” command reports
the robot’s current pose, with respect to the map origin, in
numeric form.

The Skypkit runtime logs into the Skype network as a
unique user, picks up the incoming call, passes local audio
and video to the remote user, and renders incoming audio. As
mentioned earlier Skypekit has no GUI and cannot display
the video feed from the remote user. For Unix-like systems
the video frames are written into Posix shared memory for
access by a rendering client. We wrote a separate C++/Qt
program to perform video rendering from the shared memory
buffer.

III. MAP-BASED NAVIGATION

While the map was a very significant aid for navigation it
was still clunky to issue “where?” commands and mentally
plot the location on the map. We wanted to create an interface
akin to the GPS navigation system in a car — to display a
map and our position on that map — since we know this is
a very useful tool when navigating in an unknown city. This
required providing the user with a richer connection to the
robot’s navigation stack — using the robot’s pose to animate
an icon on a map on the user’s desktop, and to allow the user
to drive by clicking points on the map.

To implement this meant extending the robot-end server
and using Skypekit at the client end as well, as shown in
Figure 4. Rather than chat, since the communications is
program to program, we use Skype’s App2App messaging
for the following tasks:

 to request a map from the robot-end server,
« to push robot pose updates to the user-end map display,
and

System architecture for chat-based navigation. ROS related functionality is shown in blue.

El

Fig. 5. Remote map view for map-based navigation. The robot’s current
pose is shown as a circle with a direction indicator (shown in the middle
of the long vertical corridor). The red dot to the right is the origin of the
robot’s map.

Proceedings of Australasian Conference on Robotics and Automation, 3-5 Dec 2012, Victoria University of Wellington, New Zealand.

Cameras I:D

CHAT

dispatcher

Skypekit
runtime

/map_. map
:’““a”ge FILETRANSFER
Navstack | 1
request
/goa : mg(ion
AMCL
gmapping
Posix shared
memory
video
renderer

Robot-end

=

Camera

N move robot
icon

<
<

Skypekit
runtime

map click

Map window

render map

Pushed map file

Posix shared
memory

video
renderer

User-end

Fig. 4. System architecture for map-based navigation. ROS related functionality is shown in blue.

« to push navigation goals to the robot-end motion server.

This structure is easily extensible to other information such
as battery levels, robot moving status, ROS diagnostics and
other utility information which could also be displayed on
the user-end GUI.

To ensure maximum portability our intention was to
write the user-end application in Java but the Java API
for SkypeKit is currently rudimentary. Instead we used
the Python API and the TkInter graphical interface which
is a standard part of all Python distributions, and in our
experience less problematic across platforms than WxPython.
The program is event driven and handles events from ROS,
Skypekit and the TkInter windowing system.

When the user-end client starts it requests a map which
is delivered by Skype file transfer. An event handler on
file transfer completion causes the file to be rendered into
a window. ROS pose updates on the /amcl_pose topic are
converted to App2App messages and sent to the user-end
where an event handler updates the position and orientation
of the robot icon on the map, see Figure 5. When the user
clicks a point on the map an event handler sends an App2App
message to the robot-end where a handler generates a ROS
/goal topic.

A video renderer process is required to display the video
from the robot-end.

IV. SAFETY AND SECURITY

For remote robot operation safety and security are critical
considerations. Taking security first, the challenge is to pre-
vent unauthorized users from anywhere on the internet taking
control of the robot. For this we rely on Skype’s security
features of only accepting calls from users on the contact
list. This in turn relies on Skype’s robust authentication and

requires the use of strong passwords for users who are on
the robot’s contact list.

To ensure safety we have a number of strategies. Firstly
we rely on the robot’s navigation ability to move in areas of
free space, and the robot’s onboard sensors (laser, ultrasonics
and bump sensors) to stop in the presence of obstacles. We
limit the robot’s speed and ensure that the vision stream from
the robot-end shows the area in front of the robot while the
robot is moving — we want to discourage a remote-user
from walking and talking.

If the user hits any key in the map GUI a message will be
sent to stop the robot immediately. If the robot-end Skypekit
detects that the call has been hungup or become disconnected
the appropriate callback functions will command the robot
to stop.

V. REFLECTIONS
A. Portability

We made the decision to use Skypekit rather than the
vanilla Skype client since Skypekit is actively supported by
Skype and has an API with Python bindings [13]. Python
programs are quite portable and provides an easy integration
path with ROS. However in retrospect the Skypekit path
was more difficult than we had expected: to gain access
to Skypekit requires joining the developer program; the
runtime is only available for desktop platforms and must
be specifically requested from Skype; a keypair is required
to allow it to operate; and a separate application is required
to display video though C++/Qt is quite portable. The result
is three applications (Skypekit runtime, Python application
and C++/Qt video renderer) at the user-end which is more
complex than ideal.

The alternative is to use a vanilla Skype client at the user-
end and remote control it through the Desktop API [12]

Proceedings of Australasian Conference on Robotics and Automation, 3-5 Dec 2012, Victoria University of Wellington, New Zealand.

which is quite complete but there are no Python bindings
and the interface is operating system specific. Under Linux
the interface is via DBUS which can be interfaced to Python
using the dbus module. Under MacOS the interface is a
Cocoa framework which requires an application written in
Objective C — applications can be written in Python using
PyObjC and then translated into a MacOS application. For
both Linux and MacOS this requires non standard Python
modules with unknown support status.

B. Future work

The framework we have developed is powerful and opens
up many opportunities and we discuss some of them below:
a) Voice feedback: for the chat-based interface we are
testing the integration of voice synthesis so that the robot-end
server responds by voice rather than by chat.

b) Robot teleconferencing: where one user can interact
with and through a number of robots.

c) Robot-end person recognition: where a Kinect sen-
sor and/or face recognition alerts the remote user of the
presence of a person. Kinect-based person and gesture recog-
nition will also allow for a “follow me” primitive where the
robot follows a local person to some destination rather having
to be remotely driven. This would allow for a safe remote
walk and talk behaviour.

d) ROS topic transport: Skype’s App2App messaging
allows an arbitrary number of datagrams to be sent to and
from named endpoints and this has a very strong similarity to
ROS topics. It is possible for the user-end client to request
the robot-end to subscribe to an arbitrary ROS topic and
send topic updates on a new App2App stream to the user-
end where they could be rendered.

This could be taken further with the development of a user-
end ROS proxy that would relay ROS topics from the robot-
end via multiple App2App message streams. This would
allow the user to run more sophisticated ROS applications
such as rviz and use Skype as the data transport layer, with
all the advantages this has for both security and firewall
penetration.

e) MATLAB integration: In Section II it was mentioned
that Skypkit does not perform video display, but instead
writes video frames into Posix shared memory. This has the
advantage that the incoming video stream can be shared by
multiple clients in addition to a video display window. We
have written a simple video logger and also a MATLAB
mex-file that brings frames into the workspace. This allows
image-based control of the remote robot using floor color
segmentation or vanishing lines. Working in MATLAB al-
lowed us to use the Machine Vision Toolbox [14] as well as
MATLAB'’s extensive suite of data visualization tools.

VI. CONCLUSIONS

Skype is a well known tool for tele- and video-
conferencing but it has little-known but powerful capabilities
for integration with other software which make it well suited
for use as a powerful framework for robotic teleoperation and
telepresence. Some of its advantages include connectivity

through firewalls and NAT boxes, powerful communications
primitives for multiplexing application data streams along-
side audio, video and chat data, and strong security. We have
integrated Skype into a ROS/Linux framework which gives
the remote user all the advantages of local robot autonomy
such as map-based navigation and obstacle avoidance. This
allows the remote user to not only interact with people near
the robot but also to view maps, robot sensory data, robot
pose and to issue high-level motion commands to the robot’s
navigation stack.

REFERENCES

[1] F. Michaud, P. Boissy, H. Corriveau, A. Grant, M. Lauria, D. Labonte,
R. Cloutier, M. Roux, M. Royer, and D. Iannuzzi, “Telepresence
robot for home care assistance,” in AAAI Spring Symposium on
Multidisciplinary Collaboration for Socially Assistive Robotics, 2007.

[2] H. Nakanishi, Y. Murakami, D. Nogami, and H. Ishiguro, “Minimum
movement matters: impact of robot-mounted cameras on social
telepresence,” in Proceedings of the 2008 ACM conference on
Computer supported cooperative work, ser. CSCW ’08. New
York, NY, USA: ACM, 2008, pp. 303-312. [Online]. Available:
http://doi.acm.org/10.1145/1460563.1460614

[3] Robot operating system. [Online]. Available: http://www.ros.org

[4] J. Drury, B. Keyes, and H. Yanco, “Lassoing hri: analyzing situation
awareness in map-centric and video-centric interfaces,” in Proceedings
of the ACM/IEEE international conference on Human-robot interac-
tion. ACM, 2007, pp. 279-286.

[5] iRobot Corporation. irobot ava mobile robotics platform. [Online].
Available: http://www.irobot.com/ava/

[6] (2011) Anybots. [Online]. Available: https://www.anybots.com

[71 J. C. Lee. (2011) Low cost video chat robot v2.
[Online]. Available: http://procrastineering.blogspot.com.au/2011/02/
low-cost-video-chat-robot.html

. (2011) Low cost video chat robot.

http://youtu.be/9LNS9CivO34
[9] (2012) Sparky jr project. [Online]. Available: http://sparkyjr.ning.com/
[10] D. Schneider, “I, office worker [hands on],” Spectrum, IEEE, vol. 47,
no. 10, pp. 20 21, october 2010.

[11] H. Wiguna. Skyduino. [Online]. Available: http://www.arduino.cc/

cgi-bin/yabb2/YaBB.pl?7num=1266383955

[12] Skype public api. [Online]. Available: http://developer.skype.com/

public-api-reference

[13] Skypekit api. [Online]. Available: http://developer.skype.com/skypekit/

reference/

[14] P. Corke. (2012) Robotics, vision & control toolboxes. [Online].

Available: http://www.petercorke.com/RVC/top/toolboxes/

[8] [Online]. Available:

