
MASARYK UNIVERSITY

FACULTY OF INFORMATICS

}w��������
��������������� !"#$%&'()+,-./012345<yA|
Analysis and detection of

Skype network traffic

DIPLOMA THESIS

Luboš Ptáček

Brno, autumn 2011

Declaration

I declare that this thesis is my own work and has not been submitted in any
form for another degree or diploma at any university or other institution of
tertiary education. Information derived from the published or unpublished
work of others has been acknowledged in the text and a list of references is
given.

Advisor: RNDr. Jan Vykopal

ii

Acknowledgement

I would like to express my gratitude to RNDr. Jan Vykopal for supervising
my work and thank Jan Hapala for advices.

iii

Abstract

This thesis deals with traffic identification of the Skype application. Payload
and flow based analysis of the standby traffic and voice calls is done. Skype
flow patterns are used to create a plugin for NfSen to detect UDP voice calls
in the network.

iv

Keywords

Skype, voice calls, UDP, traffic, payload, analysis, flow, NetFlow, NfSen

v

Contents

1 Introduction . 3
2 Skype history . 5
3 Skype . 6

3.1 Skype entities . 6
3.2 Key components . 8

3.2.1 Ports . 8
3.2.2 Host cache . 8
3.2.3 Encryption . 9

4 Skype traffic analysis . 10
4.1 Stages in Skype network conversation 10

4.1.1 Startup and UDP probing 10
4.1.2 TCP handshake with supernode 12
4.1.3 Authentication . 14
4.1.4 Skype latest version check 14
4.1.5 NAT and firewall determination 15
4.1.6 Going online . 15
4.1.7 Going offline . 19

4.2 Voice call properties . 19
4.2.1 Voice codec . 19
4.2.2 Call placement . 20

4.3 Proposed voice call detection method 24
5 NetFlow protocol . 26

5.1 NfSen and NFDUMP . 28
5.1.1 NFDUMP . 28
5.1.2 NfSen . 31
5.1.3 Plugins for NfSen . 31

6 Creation of DetectSkype plugin for NfSen 33
6.1 Backend plugin . 33

6.1.1 TCP traffic to ui.skype.com 34
6.1.2 UDP voice call properties 34
6.1.3 UDP port . 35
6.1.4 Bidirectional property 36

1

6.2 Frontend plugin . 37
6.3 Testing the plugin implementation 41

6.3.1 Voice call . 41
6.3.2 Voice call from Android device 41
6.3.3 Conference call . 42
6.3.4 Voice call during BitTorrent activity 43
6.3.5 Video call . 43
6.3.6 Conclusion from test results 44

7 Conclusion . 45

2

Chapter 1

Introduction

Skype [20, 25] is a software application that allows users to start and receive
voice and video calls and to chat over the Internet. Also voice or video
conference, and file transfers are supported. Skype also offers application
programming interface which can be used by third party applications to
initiate communication in the Skype network. The Skype network is a P2P
VoIP network.

Success of the application comes from user friendly operation as it can
operate without manual user configuration. This user friendliness is largely
due to ability to detect the current network configuration and use of mech-
anisms to circumvent many applied network restrictions.

Skype utilizes encryption to provide secure communication inside the
whole Skype network. It also uses several techniques to conceal the traffic.
This results to the fact that traditional port based or payload based methods
of identification of Skype traffic cannot be applied.

Network administrators or operators are usually interested in the nature
of traffic transfered through the network in order to optimize network per-
formance, forecast future development or to have the traffic under control.
Skype usage is also nowadays under the supervision of mobile operators.
Amount of mobile phones with available WiFi or 3G connectivity increases
and users have the option to choose between traditional phone calls and
available VoIP services.

Unregulated Skype usage by employees for leisure and private pur-
poses can lead to economic loss. Skype can often circumvent network re-
strictions like NAT and firewall by traversing them. Therefore enterprises
are seeking solutions to regulate Skype activities over their networks. Skype
establishes many concurrent connections in a rapid manner, which can be
recognized as undesirable behaviour.

Skype traffic detection can be categorized into payload-oriented and
into nonpayload-oriented approaches. One method based on Pearson’s Chi
Square test is used to detect Skype’s fingerprints from the packet framing
structure, exploiting the fact whether payload bytes are truly random or

3

1. INTRODUCTION

not, a condition that has to be true for encrypted traffic [5]. Another method
to classify Skype VoIP traffic is based on Naive Bayes Classifier using packet
arrival rate and packet length [5]. There can also be used some machine
learning algorithms like AdaBoost or C4.5 [3]. Machine learning involves
the construction of a classifier that uses characteristics of the sequence of
data packets to identify its class.

The limitations of port and payload based analysis have motivated the
use of flow (sequence of packets) statistics for traffic classification. These
techniques rely on the observation that different applications have distinct
behavior patterns on the network. The goal of this thesis is the analysis of
Skype traffic on the payload level and on the flow level, and subsequently
to propose Skype detection method that utilizes flows. NetFlow protocol
[6] reports aggregated information about traffic traversing the routers in
the form of flow-records. While this kind of data is already effectively used
for accounting, monitoring and anomaly detection, the limited amount of
information it conveys has until now hindered its employment for traffic
classification purposes.

Chapter 2 serves as an overview of the Skype history. Chapter 3 pro-
vides information about entities that we can distinguish in the Skype com-
munication framework, and about application key components. Chapter
4 describes Skype application stages from the startup to the termination
of the application. Also results of Skype traffic analysis will be presented.
Method that detects voice calls is proposed based on measurements. Net-
Flow protocol, NfSen and NFDUMP tools are described in Chapter 5. Dis-
cussion related to the practical implementation of the proposed detection
method is then given in Chapter 6. Plugin for NfSen was created and its
backend and frontend part is presented here. Test calls were performed to
test the plugin implementation and results are described.

4

Chapter 2

Skype history

Skype was founded in 2003 by Niklas Zennström from Sweden and Janus
Friis from Denmark. The Skype software was developed by Estonians Ahti
Heinla, Priit Kasesalu and Jaan Tallinn [13], who were also behind the peer-
to-peer file sharing software Kazaa [23]. In April 2003, Skype.com and
Skype.net domain names were registered. In August 2003, the first public
beta version was released.

One of the initial names for the project was “Sky peer-to-peer”, which
was then abbreviated to “Skyper”. However, some of the domain names
associated with “Skyper” were already taken. Dropping the final letter left
the current title “Skype”, for which domain names were available. Calls
to other users within the Skype service are free, while calls to both tradi-
tional landline telephones and mobile phones can be made for a fee using a
debit-based user account system. Skype has also become popular for its ad-
ditional features which include instant messaging, file transfer, and video
conferencing. Skype has 663 million registered users as of 2010 [15]. The av-
erage number of users connected each month was 145 million in the fourth
quarter of 2010, versus 105 million a year earlier, while paying customers
rose over the same period to an average 8.8 million per month, from 7.3 mil-
lion. Skype reached a record with 30 million simultaneous online users on
28 March 2011 [14]. The network is operated by Microsoft Skype Division,
which has its headquarters in Luxembourg. Most of the development team
[13] and 44% of the overall employees of Skype are situated in the offices of
Tallinn and Tartu, Estonia. eBay acquired Skype Limited in September 2005
and in April 2009 announced plans to spin it off through an initial public
offering in 2010. It was acquired by Silver Lake Partners in 2009. Microsoft
agreed to purchase Skype for $8.5 billion on May 2011 and the company is
to be incorporated as a division of Microsoft called Microsoft Skype Divi-
sion.

5

Chapter 3

Skype

Following chapter will describe Skype entities and key components of the
application.

3.1 Skype entities

According to [10], we can distinguish some entities in the communication
framework.

Skype client (SC) End client which places voice calls. Each SC maintains
a record host cache which contains IP addresses and port numbers of su-
per nodes. Notation SCA and SCB denotes the SC of the Caller and Callee
respectively.

Supernode (SN) Online nodes that maintain the skype overlaying net-
work. As described in [7], a supernode performs routing tasks such as for-
warding requests to appropriate destinations and answer to queries from
other SCs or SNs. A supernode can also forward login requests in case the
login server is not directly reachable from a SC. Any SC with a public IP
address can be promoted to an SN without the awareness of the SC host.
This behaviour can be switched off by changing the registry entries.

Skype HTTP Server (HS) The HTTP server of ui.skype.com.

Login server (LS) An SN that Skype uses to provide authentication ser-
vices to SCs.

Neighbour supernode (NSN) SNs that are logically near to an SC. An SC
must establish connection to some SNs for Skype communications. The SC
locates and then binds to its NSN for such purpose. An SN can be the NSN
of multiple SCs simultaneously.

6

3. SKYPE

Figure 3.1: Basic Skype network, figure from [4]

7

3. SKYPE

3.2 Key components

Port numbers that Skype client utilizes for its communication in the Skype
network and IP addresses of supernodes are important information that is
stored by the application.

3.2.1 Ports

Skype uses UDP and TCP protocols for communication. SC has under com-
mon conditions three listening ports enabled. They are configured in the
Connection dialog box. The first one is randomly chosen during the appli-
cation installation and is higher then 1024 according to [16]. Then there are
open listening ports 80 and 443 which can be disabled in the dialog box. SC
is reachable by the first port number for UDP traffic. For TCP connection,
Skype opens randomly chosen ports higher than 1024 to contact other hosts.
If there are network restrictions applied, it tries again to this host on port
443. If this attempt fails, it will try on port 80. Connection on port 80 was
seldom detected. This can be explained in a way that the SC tries concur-
rently to initiate connections with other hosts and there will be a successful
connection earlier than the need of making an attempt on port 80. So the
ports 443 and 80 serve as a fallback precaution.

3.2.2 Host cache

Skype network is an overlay network and thus each SC maintains a table of
reachable supernodes. It is called host cache (HC) and is stored in the XML
file “shared.xml” (in the case of Windows 7, it is stored in C:\Users\<user
name>\ AppData\Roaming\Skype\). The HC contains a maximum of 200
entries. The file shared.xml contains element <HostCache> with a hex
string (<HostCache> with 200 entries has around 12800 characters). An
example of the <HostCache> element follows. Part of the string is divided
here in several separate substrings that store some information – descrip-
tion also follows.

<HostCache>
41C80105004105020059A9FF2F9DC20001040002DCCDF0DE
040003DCCDF0DE04000400050041050200
...
04000400050041050200
D5F0C7F6DE02
0001010002

8

3. SKYPE

A2A4E5DE
040003
D6E2E5DE
04000400050041050200
...
040004000500410502005D7B32BFF593000104000280CCF0DE
04000380CCF0DE04000400

</HostCache>

From the knowledge that the string contains list of supernodes IP ad-
dresses and their corresponding ports, the string was analyzed and searched
for some delimiters. The main delimiter is the substring
04000400050041050200. It separates the list of supernodes and after it
there are 12 characters. Decoding them as IP address and port number we
can obtain address 213.240.199.246 and port 56834. Substring 0001010002
is the next delimiter (the middle character with value 1 can have differ-
ent values). Substring 040003 separates two substrings – A2A4E5DE and
D6E2E5DE – which have sometimes equal value. Values of these two sub-
strings differ for each supernode, but their purpose is unknown.

3.2.3 Encryption

All Skype-to-Skype voice, video and instant message conversations are en-
crypted as described in [20]. Skype uses the Advanced Encryption Stan-
dard, also known as Rijndael, which is used by the US Government to pro-
tect sensitive information, and Skype uses the maximum 256-bit encryp-
tion. User public keys are certified by the Skype server at login using 1536
or 2048-bit RSA certificates.

9

Chapter 4

Skype traffic analysis

Following chapter will describe Skype application stages from the startup
to the termination of the application. Also Skype traffic analysis and net-
work measurements, that were performed, will be depicted. Measurements
were performed on Windows Skype versions 4.1.0.136, 4.2.0.187 and
5.3.0.111 unless otherwise stated.

4.1 Stages in Skype network conversation

Wireshark [27] tool was used as the packet analyzer during the Skype traffic
analysis and measurements. Skype stages and corresponding traffic from
starting up the application till going offline will be described in this section.

4.1.1 Startup and UDP probing

The client application is started at SCA. It sends UDP messages to mul-
tiple SNs saved in client’s host cache HCSCA

till positive response is re-
ceived. Positively responding supernodes are important for the next stage
(described in the subsection 4.1.2). SC initiates two-way UDP handshakes
to the supernodes stored in HC. The source port is the one stored in Con-
nection dialog box and destination ports are ports corresponding to the su-
pernodes in the HC. The notation for messages in these handshake probes
will be P1 and P4 (outgoing UDP probe and incoming response). The pur-
pose of handshakes is to determine possible candidates that allow the SC
to connect to the Skype network.

We can distinguish different payload sizes for messages – notation for
the message X is sX . If sP4 = 18 bytes, then we can call this handshake
as positive. SC then tries to establish a TCP connection to the positively
probed supernode. From the measurements, if sP4 = 51 or 53, then we can
call this handshake as negative. No TCP connection will be initiated be-
tween Skype client and supernode. This UDP probing continues in rapid

10

4. SKYPE TRAFFIC ANALYSIS

and continuous manner until positive response is present and TCP connec-
tion is established.

Sometimes we can observe handshakes consisting of 2 more messages
P2 and P3 at the start of the application. It holds true for the message sizes:

sP2 = 11,

sP3 = sP1 + 5.

Analysing the payload of the messages we can differentiate some byte se-
quences according to [7] – session identifiers, function parameters, IP ad-
dress exchange.

Session identifiers P1 is an initiating message and first two payload bytes
forms the session identifier. The important observation is that the session
identifier is the same for P2 and P3, on the contrary it does not hold for P4.
In fact, this identifier is a number that is increased by two on every new
handshake.

Function parameter The third byte of UDP messages has particular val-
ues so we can consider it as some kind of function parameter. It holds that
it contains value 0x02 for P1 and P4. The value is different for P2 and P3 but
the lower nibble is always the same (a nibble is an aggregation of four bits
so there are two nibbles in a byte – the higher one and the lower one). It is
0x7 for P2 and 0x3 for P3. There is one more value that is the same through
the P3 payloads. The fourth byte possesses 0x01 value.

IP address exchange We can distinguish four four-byte sequences in the
messages. Notation for the payload bytes x to y of the message X is Xx−y.
P24−7 contains IP address of the SC, P39−12 contains IP address of the su-
pernode. The SC ’s IP address in this message is never private address. We
have found out that it is the publicly visible IP address created by the NAT
closest to the supernode. This is called a reflexive transport address ac-
cording to [9]. Then sequences that are not IP addresses can be observed
(A1A2A3A4 and B1B2B3B4). Our assumption is that they are some unique
message identifiers as P18−11 = P313−16 and P28−11 = P35−8.

Byte sequences are depicted in the following tables. SC1–SC4 denotes
SC ’s IP address and N1–N4 denotes SN ’s IP address.

P1 SI SI 02 xxxxxxxx A1A2A3A4 xxxx . . .

11

4. SKYPE TRAFFIC ANALYSIS

P2 SI SI x7 SC1 SC2 SC3 SC4 B1B2B3B4

P3 SI SI x3 01 B1B2B3B4 N1N2N3N4 A1A2A3A4 . . .

P4 xxxx 02 xx . . .

We can refer to a full UDP probe if P1, P2, P3 and P4 messages are
present and to a partial UDP probe if only P1 and P4 messages are present.
As we can detect particular IP addresses in the full UDP probes, we can con-
sider these probes as some part of NAT detection algorithm which operates
similar to STUN (Session Traversal Utilities for NAT) [9].

The SC continues in the partial UDP probing even after it has been
logged into the Skype network.

4.1.2 TCP handshake with supernode

In this step Caller registers to the Skype network. A TCP request is sent
to the positively responding supernode from the previous step (subsection
4.1.1). The TCP connection is established to the same port the UDP probe
used. No payload patterns were observed when Skype utilizes outgoing
ports different from port 443 as described further.

TCP problems If there is a problem with establishing a connection to the
positively UDP probed supernode, then Skype will start initiating connec-
tion over ports 443 and 80. The tricky thing is that Skype does not follow
communication protocols associated with these well-known ports. Skype
employs some modification of TLS protocol [2] for port 443 as described
further.

Port 443 It holds for the first message R1 sent to the supernode that sR1 =

72 bytes. The main observation is that the message payload starts with 56
byte sequence:

80 46 01 03 01 00 2d 00

00 00 10 00 00 05 00 00

04 00 00 0a 00 00 09 00

00 64 00 00 62 00 00 08

00 00 03 00 00 06 01 00

80 07 00 c0 03 00 80 06

00 40 02 00 80 04 00 80

12

4. SKYPE TRAFFIC ANALYSIS

Using Wireshark to view details of captured network traffic we can de-
code this sequence as follows. It is TLS 1.0 Client Hello message in
SSLv2 record layer.

Values {80 46}mean the length of the message (that is 70), {01} hand-
shake message type (here Client Hello), {03 01} the version of the TLS
protocol by which the client wishes to communicate during this session
(here TLS 1.0), {00 2d} cipher specification length (here 45), {00 00} ses-
sion ID length (here 0), {00 10} challenge length (here 16), {00 00 05 00
00 04 00 00 0a 00 00 09 00 00 64 00 00 62 00 00 08 00 00
03 00 00 06 01 00 80 07 00 c0 03 00 80 06 00 40 02 00 80
04 00 80} list of the cryptographic options supported by the client. R1
messages differ only in the last 16 bytes and it should represent the
challenge attribute.

Response message R2 from the supernode contains always at the first 79
bytes these values:

16 03 01 00 4a 02 00 00

46 03 01 40 1b e4 86 02

ad e0 29 e1 77 74 e5 44

b9 c9 9c b4 31 31 5e 02

dd 77 9d 15 4a 96 09 ba

5d a8 70 20 1c a0 e4 f6

4c 63 51 ae 2f 8e 4e e1

e6 76 6a 0a 88 d5 d8 c5

5c ae 98 c5 e4 81 f2 2a

69 bf 90 58 00 05 00

This start of the message is similar to to the TLS Server Hello. Value
{16}means content type (here handshake), {03 01}means TLS 1.0, {00
4a} means length (here 74), {02} handshake type (here Server Hello),
{00 00 46} length (here 70), {03 01}means TLS 1.0.

Bytes R212−15 should be gmt unix time. In the TLS protocol descrip-
tion gmt unix time is “the current time and date in standard UNIX 32-bit
format (seconds since the midnight starting Jan 1, 1970, GMT)”. But the
R212−15 bytes have fixed value {40 1b e4 86} and that is “Jan 31, 2004
18:23:18 Central Europe Standard Time”.

Then there are 28 bytes in the random bytes field, one byte of session
ID length, 32 bytes of session ID. Field with bytes R277−78 has the
value {00 05} and according to TLS it should be “the single cipher suite
selected by the server from the list in Client Hello” – here it is
TLS RSA WITH RC4 128 SHA.

13

4. SKYPE TRAFFIC ANALYSIS

Port 80 In Skype version 2.0 there were noticed value recurrences in the
higher nibbles of bytes of the R1 message as mentioned in [7]. These recur-
rences or any other were not confirmed by analysis in the messages to the
port 80 in Skype versions 4.1 and 4.2.

4.1.3 Authentication

After connection to some supernode with destination port 33033, SC tries to
authenticate itself to the Skype network. In previous versions of the Skype
application there were four TCP messages exchanged in every connection
to LS in general and after that the connection is closed as mentioned in
[7]. All tested Skype versions were searched for some payload pattern but
there was found a pattern only in communication with particular LSs like
LS with IP address 195.46.253.219. Our assumption is that the pattern
depends on a particular login server or some unknown condition. When
the pattern occurs then the first six messages M1-M6 exchanged between
SC and LS look like depicted further.

M1 SC → LS 16 03 01 00 00

M2 SC ← LS 17 03 01 00 00

M3 SC → LS 16 03 01 00 00

M4 SC ← LS 17 03 01 00 00

M5 SC → LS 16 03 01 00xx 42 cd ef e7 40 d7 2f 1d . . .

M6 SC ← LS 17 03 01 01 . . .

Messages M1-M4 have fixed size of 5 bytes as opposite to M5 and M6.
The fifth byte of the message M5 does not contain always a fixed value. This
holds also for the connections on outgoing ports 443 and 80 too if they are
used.

4.1.4 Skype latest version check

In the next stage, if the application was installed for the first time and this
is its first run, then it sends an HTTP request to HS (ui.skype.com). The
request method is GET and we can find in the request URI following pat-
terns: /ui/ and /installed, see Table 4.1.

If Skype has already been installed, it will check with HS the latest ver-
sion of the application. This check occurs every time Skype is started. Skype
client sends an HTTP request and the patterns are /ui/ and
/getlatestversion?ver=, see Table 4.2.

14

4. SKYPE TRAFFIC ANALYSIS

/ui/0/5.3.0.111./en/installed
?info=google-toolbar:notoffered;
ienotdefaultbrowser2,google-chrome:notoffered;
alreadyoffered

Table 4.1: Example of the GET request after Skype installation

/ui/0/5.3.0.111./en/getlatestversion?ver=5.3.0.111
&uhash=1d1bb29ea1f2970757800d8e22b9ce8d6
&google-chrome:notoffered;
alreadyoffered

Table 4.2: Example of the GET request after Skype start

This GET request was captured during measurements regularly every 4
hours and furthermore requests, but with the empty request URI, can occur
between these regular GET requests. Under normal conditions (e.g. no TCP
RST flag is present) 5 TCP packets are sent in both directions, otherwise at
least 3 TCP packets are sent.

4.1.5 NAT and firewall determination

At the transport layer, Skype performs NAT and firewall detection. NAT
traversal is an important function of Skype for determining what kind of
NAT settings is the SC currently behind. Once determined, the client stores
this kind of information in some manner in the “shared.xml” file as the ele-
ment <NatTracker> is present. Each SC uses a variant of the STUN pro-
tocol to determine the type of NAT the client is behind. There is no global
NAT and firewall traversal server. If there was one, the SC would have
exchanged traffic with it at the start, but no IP address repetition or some
specific behaviour at particular stages of the Skype session was observed.

4.1.6 Going online

Neighbour supernode (NSN) If the client starts only with the Offline sta-
tus, no further traffic is recorded. Going Online, UDP packets are sent to
multiple SNs rapidly and continuously. This kind of UDP pinging mes-
sages is detected during the whole Skype session (these UDP probes were
described in the previous subsection 4.1.1). In this step, SC searches for

15

4. SKYPE TRAFFIC ANALYSIS

Figure 4.1: At least every 120 seconds SC sends TCP packet to its NSN.

available neighbour supernode (NSN) and binds to it with TCP connec-
tion.

After positive UDP handshake with some SN as described previously,
SC initiates a TCP connection to this node. If the connection is successful,
then SC and SN exchange several messages. If the connection is kept, then
SN becomes NSN for the Skype client. This binding lasts as long as the
SC is online but sometimes termination of the connection can occur (e.g. 39
hours lasting connection to NSN was captured during measurements till
termination occurred). Our prediction is that it is caused by unavailability
of the NSN or the supernode becomes a regular node. As the SC is always
bound with some NSN, a new binding process will start after termination of
the previous connection with NSN. It has not been found out any particular
pattern that would be common for every startup of the SC. However, we
have often observed packets with payload sizes 4, 8 and 27 (or 28) bytes
initiated by SC between first 10 packets exchanged between SC and NSN.

There is probably some timeout counter used on the both sides as we
can find regular traffic. We have found out that after 120 seconds lasting
time window or if any of the parties sends packets containing some sig-
nalling information during the 120 seconds time window, then SC or NSN
sends a packet with s = 2 and a sequence of messages M1–M4 begins. They
can be some keep-alive messages. New timeout starts to count down for
corresponding parties from the moment when M1 and M2 are sent.

M1 → sM1 = 2 TCPPush,Ackflags

M2 ← sM2 = 0 TCPAckflag

M3 ← sM3 = 2 TCPPush,Ackflags

M4 → sM4 = 0 TCPAckflag

16

4. SKYPE TRAFFIC ANALYSIS

Figure 4.2: Inter packet gap of 900 seconds (i.e. 15 minutes) for outgoing
TCP packets (with payload > 200 bytes) to NSN was observed.

Periodicity in sending packets is shown in Figure 4.1. Almost 135 hours
of standby Skype traffic with the longest continuously measured time slot
of 67 hours were captured for analysis. Inter packet time gaps for outgo-
ing packets in one minute time slots were counted up and that has ex-
posed peaks of 120 seconds almost every two minutes. Moreover, it has
been found out for the Skype standby mode that for most outgoing packets
with payload greater than 200 bytes the inter packet time gap equals to 15
minutes, see calculated statistics in the Figure 4.2. This was detected only
for Skype versions 4.1 and 4.2.

UDP probes From the results of measurements, SC establishes and quickly
terminates in average 5 TCP connections with supernodes per hour. Related
to UDP protocol, UDP probing as checking available peers in the Skype
network occurs mainly in bursts. In average, 30 new peers are probed ev-
ery hour (approximately 1900 per 67 hours) as shown in Figure 4.3, which
shows us statistics for the 67 hours lasting Skype standby mode. The most
peers are probed at the start of the application as we can see. Every peer is
characterized by its ID in this figure so if a new peer is probed, then it gains
his ID and corresponding dot is plotted to the graph. If some peer sends
UDP packet to the SC, then corresponding ID is plotted on the negative
y-axis. Lot of peers are probed repetitively. Very interesting is the fact that
sometimes the SC sends UDP packets repetitively (e.g. 700 packets per 50
hours) even to the peers that have never responded.

Perl modul Geo::IPfree was used to determine the originating countries
of the probed peers, see results in the Figure 4.4. The modul uses a local

17

4. SKYPE TRAFFIC ANALYSIS

Figure 4.3: Each dot represents packet sent in a given time by SC to some
other Skype peer whose corresponding ID is represented on the y-axis. Pos-
itive ID is for packet from SC to the peer, negative ID for packet to SC.

Figure 4.4: Country statistics for contacted peers.

18

4. SKYPE TRAFFIC ANALYSIS

file-based database to provide basic geolocation services. Countries were
aggregated to continents if their country codes are not presented. It is visi-
ble that most contacted peers are located in the United States.

TCP probes If UDP protocol is restricted, SC utilizes TCP protocol for
TCP probes but not in bursts like in UDP case and in lesser scope. Posi-
tively probed supernode becomes SC’s NSN. TCP packets are exchanged
continuously between SC and NSN with average packet rate 1 per 10 sec-
onds.

4.1.7 Going offline

When the client is switched to Offline status, every open TCP connection
is closed. TCP connection with the NSN is now ended. After sign out from
the Skype application, TCP connection with IP address like
78.141.181.242 or 213.146.188.16 is established. This communica-
tion occurs sometimes after startup of the SC too. These addresses are as-
sociated with Skype Communications according to WHOIS database. Our
assumption is that this connection can be somehow important for creating
Skype global statistics about users. It is worthwhile to mention that des-
tination ports 13392 or 12350 during all these captured connections were
observed.

4.2 Voice call properties

In this section Skype voice call statistics will be presented.

4.2.1 Voice codec

SILK is a speech and audio codec developed internally at Skype which is
used as the default codec for all Skype to Skype calls. It is highly scalable in
terms of audio bandwidth, network bit rate, and complexity, making it the
codec of choice for multiple modes and applications as described in [12, 8].
SILK is a replacement for the SVOPC codec [26] used firstly in Skype ver-
sion 3.2. The SILK codec was a separate development branch from SVOPC
and the final version was introduced in Skype version 4.0 (February 2009).

The SILK speech and audio codec is highly scalable in terms of audio
bandwidth, network bit rate, and complexity. SILK supports four different
audio bandwidths: 8000 Hz, 12000 Hz, 16000 Hz and 24000 Hz sampling
frequency as shown in Figure 4.5.

19

4. SKYPE TRAFFIC ANALYSIS

Figure 4.5: The average network bit rate for corresponding audio band-
widths, figure from [19]

Narrowband mode should only be used to interface to PSTN (public
switched telephone network) networks or on low end devices that do not
support greater than 8000 Hz sampling frequency, mediumband mode for
lower end devices that do not support greater than 12000 Hz sampling fre-
quency or are under severe network bandwidth constrains (e.g. wireless
devices). Wideband mode should be used for all-IP platforms that do not
support greater than 16000 Hz sampling frequency. Super wideband mode
should be used on all platforms that support 24000 Hz and greater sam-
pling frequency.

The internal audio frame size of SILK is 20 ms. The SILK encoder can be
set to join up to five internal frames into a single frame output. That means
we can get 20, 40, 60, 80 or 100 ms frames of encoded speech or audio data. It
is mentioned that SILK operates at a very low algorithmic delay, consisting
of packetization delay, i.e. 20, 40, 60, 80 or 100 ms plus 5 ms lookahead delay.

The internal sampling frequency of the encoded speech or audio signal
of SILK may change during the duration of a transmission. The average bit
rate target can be adjusted on a per frame basis. This allows support for
congestion control and network load management.

4.2.2 Call placement

The SC needs TCP connectivity to send call signalling information as de-
scribed in [20]. It strongly prefers UDP connectivity for voice and video
communication. If UDP is unavailable, it can utilize TCP for the media

20

4. SKYPE TRAFFIC ANALYSIS

Figure 4.6: Bit rate during a voice call under decreasing available band-
width every 120 seconds.

Figure 4.7: Inter packet gaps and bytes per packet during a voice call under
decreasing available bandwidth every 120 seconds.

21

4. SKYPE TRAFFIC ANALYSIS

stream but with the additional overhead due to TCP being stateful. Before
a user places his call, the client communicates with the peer network to test
network connectivity. It checks whether the outgoing UDP port is available
and the type of address translation used by network. Status checking and
updating is also carried out through P2P architecture to identify online sta-
tus of contacts on the contact list. We have observed that if there appears
status change (e.g. some contact goes from Offline status to Online status),
then SC is informed about this change from NSN by 2 up to 4 TCP mes-
sages exchange.

There are several possibilities how the voice or video communication is
transfered through the network. If both caller (SCA) and callee (SCB) are
on machines with public IP addresses, then upon pressing the Call button
in the application interface the UDP probing to different peers occurs, SCA

establishes a TCP connection to the SCB and some signalling information is
exchanged. During the voice or video call UDP packets are then exchanged,
TCP connection is alive during the whole call and is kept for sending some
signalling information. It should be mentioned that for UDP data packets
like voice packets the lower nibble of the third byte equals to 0xd.

IF SCA is behind NAT, it is able often to traverse NAT and negotiate
networking parameters (remote IP address and source port) through su-
pernodes and then to initiate direct UDP connection. If SCA is not able to
communicate directly, then it will find the appropriate relay for the connec-
tion. Relays are supernodes that relay media traffic and signalling informa-
tion between clients that are not able to reach each other directly. SCA will
then try to connect to some supernode that will be the relay node. Also SCB

connects to some other supernode that will serve as the relay node.
If SCA is behind UDP restricted firewall, then TCP protocol is utilized

for transfering data and relays are always used. However, not only one re-
lay but several relays are used concurrently as we have detected by mea-
surements. The assumption is that several relays are used for some fault
tolerance or backup purposes.

How would voice call properties change, a UDP call was placed inside
local network under decreasing available bandwidth, see Figures 4.6 and
4.7. Every 120 seconds the available bandwidth was decreased (the band-
width was restricted by software tool). The bandwidth was unlimited for
the first period, then it was changed to 4000, 3000, 2000 and 1000 bytes per
second. We can see how 20, 40 and then 60 msec frames of encoded speech
were sent and how the payload size of frames was changed. The payload
size was always lower than 300 bytes. We can get the idea of voice call char-
acteristic from the facts that Skype uses one particular voice codec (SILK)

22

4. SKYPE TRAFFIC ANALYSIS

Figure 4.8: Bytes per second during a video call.

Figure 4.9: Inter packet gaps and bytes per packet during a video call.
23

4. SKYPE TRAFFIC ANALYSIS

for calls between Skype clients since application version 4 and that the pa-
rameters of the audio codec are available.

On the other hand, detailed video codec parameters are not publicly
available. Skype uses a TrueMotion VP7 video codec developed by On2
Technologies as described in [11]. The description of the codec is not avail-
able. Worth to mention is that Skype can operate on bare minimum band-
width including video as low as 4 kbps [11]. A video call was placed to
analyze if there is particular pattern e.g. in inter packet time gaps. Figures
4.8 and 4.9 show a regular video call with 30 frames per second and reso-
lution 320 x 240. As we can see, there is no clear distribution between inter
packet time gaps. Dots around the value 20 ms shows us that not all voice
packets are included in the video packets. Video packets are not sent contin-
uously but mainly in bursts – this is visible by the distribution around the
value 0 ms in the Inter packet gaps figure 4.9. Voice packets have payload
size around the value of 150 bytes whereas video packets have payload size
around 1380 bytes. As described in [22], Skype can utilize bandwidth from
100 kbps up to 1.5 Mbps in the case of HD video call (in group video calling
up to 8 Mbps for download).

4.3 Proposed voice call detection method

This chapter has dealt with the analysis of Skype traffic. Patterns that could
be used by packet filters and analyzers were described. The main purpose
of analysis and measurements was to find out patterns that will reveal
Skype traffic not from packet payload but from flows (next chapters deal
with flows in detail). Flow is a sequence of packets with some common
properties and gives us traffic statistics calculated from all packets in the
flow. Therefore long lasting patterns are those that can be used.

Instant messaging and sending files were also under the scope of mea-
surements. These activities do not reveal long lasting patterns. In the case
of utilizing TCP protocol for voice or video calls Skype opens randomly
chosen TCP ports and several concurrent connections to different relays are
established. Traffic bandwidth is not equally divided between these con-
nections. On the contrary, UDP protocol reveals characteristic that could be
used for flow analysis. As detailed parameters of voice calls were presented,
we can propose a detection method that will detect Skype voice calls.

Skype latest version check is performed at least every 4 hours so we can
search for SCs that establish connection to ui.skype.com. UDP probes
are sent throughout the whole Skype session and as they are sent from the

24

4. SKYPE TRAFFIC ANALYSIS

same source UDP port, we can search for the port number. We can search for
it at two different occasions to increase the reliability of correctly detected
port – once the latest version check is detected and once the voice call is
detected. Voice calls have particular packets per second, bits per second
and bytes per packet characteristics. Also calls have bidirectional patterns
so the number of incoming connections to detected IP address and UDP
port will be searched. The proposed method for detecting Skype voice calls
follows, detailed explanation of values is presented in 6.1:

• Search for UDP voice calls.
UDP connections where packets per seconds > 15 and < 70,
bits per second > 13000 and < 99000,
bytes per packet < 300.

• Search for Skype latest version check.
TCP connections where destination is ui.skype.com,
destination port is 80,
number of packets > 3.

• Search for Skype UDP port at the time of voice call start and at the
time of Skype latest version check.
UDP connections established from source IP address,
source port > 1024,
bytes per packet > 40 and < 80,
number of packets equals to 1.
Port with the most connections is marked as the Skype UDP port.

• Count number of incoming calls to the particular IP address and UDP
port.

• If the source UDP port of voice call equals to UDP ports detected dur-
ing Skype latest version check and start of the voice call,
number of incoming calls is higher than 0 and lesser than 25,
Skype latest version check was detected during last 4 hours,
then detected voice call is confirmed as voice call.

25

Chapter 5

NetFlow protocol

NetFlow is a network protocol developed by Cisco Systems for collecting IP
traffic information. It has become an industry standard for network traffic
monitoring and is widely used measurement solution today. NetFlow pro-
vides network administrators with acces to IP flow information from their
data networks. A flow is defined as an unidirectional sequence of packets
with some common properties that pass through a network device. Net-
work elements (e.g. routers) export these collected flows to an external de-
vice – the NetFlow collector. Exported data is used for a variety of purposes,
including ISP billing, network, user and application monitoring, capacity
planning, security analysis.

During development of NetFlow there were several protocol versions
presented. The first implementation was version v1 in 1996. It was restricted
only to IPv4 and e.g. did not support IP masks. Versions v2, v3 and v4 were
developed for internal CISCO purposes and have been never released. Ver-
sion v5 came in 2009 and is the most common and is supported by different
brands of network devices. Next versions till the version v9 are not widely
used. So after v5 the next commonly used version on recent network de-
vices is v9 [6]. IPv6 is supported and it uses templates to provide access
to observations of IP packet flows in a flexible and extensible manner. A
template defines a collection of fields, with corresponding descriptions of
structure and semantics. The advantages are that it allows export of only
required fields from the flows and that new fields can be added to the flow
records without changing the structure of the export record format. Proto-
col IPFIX (Internet Protocol Flow Informatin eXport) becomes a successor
to v9. It is IETF standardized NetFlow v9 with several extensions.

Netflow architecture consists of several NetFlow exporters. These de-
vices monitor packets entering a particular location in the network and cre-
ates flows from these packets. The information from the flows is exported
in the form of flow records to the NetFlow collector. Usually there is one
collector which parses the incoming flow records and stores them. NetFlow
monitoring using standalone NetFlow probes is an alternative to flow col-

26

5. NETFLOW PROTOCOL

Figure 5.1: NetFlow architecture using standalone probes, figure from [24]

lection from routers or switches. This approach can overcome some limita-
tions of router-based NetFlow monitoring, e.g. routers can be under heavy
traffic load and must create flows simultaneously. The probes are transpar-
ently connected to the designated location and do not influence the packets
passing this location as depicted in Figure 5.1.

The common properties that the sequence of packets in the flow share
are (according to the traditional Cisco definition) these 7 values:

• Source IP address

• Destination IP address

• Source port

• Destination port

• IP protocol

• Input interface

• Type of Service

27

5. NETFLOW PROTOCOL

The exporter will output a flow record under several conditions:

• If the exporter can detect the end of the flow, e.g. the FIN and RST bits
in a TCP connection.

• If the flow has been inactive, i.e. no packets belonging to the flow have
been observed for a certain period of time (inactive timeout).

• Long-lasting flows are exported on a regular basis. That means that
flow records are exported continuously after a certain period of time
(active timeout) for the capturing flow.

The exported record can contain a wide variety of information about
the traffic in a given flow. NetFlow v5 record contains version number, se-
quence number, input and output interface, timestamps of the flow start
and end in milliseconds, number of bytes and packets associated with a
flow, source and destination IP addresses and ports, IP protocol, Type Of
Service, for TCP flows the aggregation of TCP flags, routing information
like IP address of the next-hop along the route to the destination and source
and destination IP masks.

5.1 NfSen and NFDUMP

NfSen [18] and NFDUMP [17] are tools that are distributed under the BSD
licence. The NFDUMP tools collect, process and store NetFlow data on the
command line, NfSen is a graphical web based front end for the NFDUMP.

5.1.1 NFDUMP

NFDUMP contains several tools that support NetFlow protocol in versions
v5, v7 and v9.

• nfcapd (NetFlow capture daemon) – captures the NetFlow records
from the exporter and stores them into files. Automatically rotate files
every 5 minutes. There is one nfcapd process running for each ex-
porter.

• nfdump (NetFlow dump) – reads and displays the NetFlow data from
the files stored by nfcapd. It can create statistics, make flow data ag-
gregations or filter stored data.

• nfprofile (NetFlow profiler) – reads the NetFlow data and filters it
according to the profiles and stores it into files for later use.

28

5. NETFLOW PROTOCOL

Figure 5.2: Capture daemons store NetFlow data that is read by nfdump,
figure from [17]

• nfreplay (NetFlow replay) – reads the NetFlow data and sends it over
the network to another host.

• nfclean (old data cleanup) and ft2nfdump (data convertor)

The goal of the design is to able to analyze netflow data from the past
as well as to track interesting traffic patterns continuously. The amount of
time back in the past is limited only by the disk space available for all the
netflow data. The tools are optimized for speed for efficient filtering.

All data is stored to disk before analyzing. This separates the process of
storing and analyzing the data (Figure 5.2). The data is stored in the time
slot based fashion. Each file contains flow records captured during the con-
figured 5 minutes time slot (this value is the actual value set on a particular
NetFlow collector from Chapter 6). The output file format corresponding to
the time slot is nfcapd.YYYYMMddhhmm, e.g. nfcapd.201104271330. If
there are several exporters from which the NetFlow data are stored, then
the data is organized in the corresponding directories. One can choose its
own subdirectory structure, but in the main configuration it is year, then
month and day.

Flows can be read either from a single file or from a sequence of files as
depicted in Figure 5.3.

29

5. NETFLOW PROTOCOL

Figure 5.3: How the files are stored by nfcapd and read by nfdump, figure
from [17]

Figure 5.4: Directory structure, figure from [18]

30

5. NETFLOW PROTOCOL

5.1.2 NfSen

NfSen is graphical web based front end utilizes NFDUMP tools as men-
tioned before. It manages to display statistics about number of flows, pack-
ets and bytes in graphs using RRD (Round Robin Database) where graphs
data is stored. As humans need different point of views on the world around
us, they need also different interfaces to the stored data to view them in
different ways. NfSen preserves benefits of the command line interface and
brings concurrently graphical view. It allows easy navigation through stored
NetFlow data, processing data from a single time slot or from a time win-
dow, creating history or continuous profiles to make specific view on the
NetFlow data. NfSen also provides an option to execute specific actions
(alerts) based on user defined conditions. One of the important functions
is the option to extend NfSen with plugins. This affords us sufficient ways
how to fit our additional needs and allows us to modify NfSen capabilities.
Plugins may be selected from the NfSen navigation bar.

NfSen has a very flexible directory layout. That means that the adminis-
trator can configure NfSen to fit his own needs. Default layout is shown in
Figure 5.4. All NetFlow data is stored under PROFILEDATADIR. NfSen is
reachable by web interface after the installation, but there is also possibility
to use the command line interface if it is needed.

5.1.3 Plugins for NfSen

Plugins allow to add additional functionality in the area of statistical pro-
cessing and output presentation. Plugins structure is divided into two types,
namely frontend plugins and backend plugins. Backend plugins are in-
tended to process stored NetFlow data or to prepare them for output, or
bring functionalities like alerting conditions and actions to the NfSen. They
are run periodically or they can be run from the frontend plugin. Frontend
plugins may display any kind of data resulting from backend plugin pro-
cessing. The backend plugins are Perl modules. The frontend plugins are
defined as PHP scripts with the same name as the backend plugin. Both
plugins may exchange relevant data over nfsend.comm socket as shown
in Figure 5.5. Over this communication channel any number of scalar and
array values can be exchanged. Communication functions for the frontend
plugin are defined in nfsenutil.php file and communication functions
for the backend plugin are defined in the Perl module Nfcomm.pm. Both
plugins must implement specific functions to be correctly integrated to Nf-
Sen.

31

5. NETFLOW PROTOCOL

Figure 5.5: Communication concept for backend and frotend plugins, figure
from [18]

32

Chapter 6

Creation of DetectSkype plugin for NfSen

As a result of measurements a plugin for NfSen was created. It was devel-
oped for NfSen collector situated on nftest.ics.muni.cz. Describing
state as of July 2011, it processes flow records from 3 channels:

• 10GE connection between the Masaryk University network and CES-
NET

• 1GE from/to the Faculty od Informatics

• 1GE from/to the Vinařská dormitory

Real traffic is monitored but the data is anonymized on this collector.
That means that IP addresses are anonymized but the characteristics of the
flow records remains untouched.

The activity of the plugin can be divided into two ways. One is auto-
matic and periodic processing of stored data and creation of statistics (de-
scribed in the following section 6.1), the other one is processing user com-
mands and presentation of results (described in the section 6.2).

6.1 Backend plugin

Backend plugin is written in Perl language. The main part constitutes of Nf-
Sen demanded function run. It is run periodically with relevant parameters
(profile, profilegroup, timeslot) every 5 minutes by NfSen. Data processed
by the plugin are stored in six database files. The used database is Berkeley
DB, which is easily usable in Perl environment.

For creation of the plugin, it was necessary to define Skype activity char-
acteristic from the flow point of view. The plugin utilizes the proposed
method in 4.3. If Skype client is not able to utilize UDP protocol for plac-
ing the voice traffic, then TCP protocol is used. Several TCP connections
are established with supernodes, dynamical source ports are present and

33

6. CREATION OF DETECTSKYPE PLUGIN FOR NFSEN

no constant traffic with some continuous pattern was detected. On the con-
trary, Skype UDP traffic demonstrates several patterns that could be used
for voice call detection. Following subsections will cover implemented traf-
fic patterns that are based on Skype traffic measurements described before.

6.1.1 TCP traffic to ui.skype.com

As Skype client initiates every startup a TCP connection to specific address,
it was the first rule that was considered for implementation. The SC sends
an HTTP request to the HTTP server ui.skype.com to check the latest
version of the application. This request is also sent every four hour and
under normal conditions (e.g. no TCP RST flag is present in the flow) 5 TCP
packets are sent in both directions, otherwise at least 3 TCP packets are sent.
Filter for nfdump that will gain flow records representing this rule follows:

proto tcp and $srcnet and dst ip $uiskypeaddress
and dst port 80 and packets > 3

$srcnet is set to src net 147.250.0.0/16 as the university ad-
dresses are anonymized to this mask. $uiskypeaddress is set to
203.233.225.202 as this is the actual anonymized address for
ui.skype.com. If anonymization is not used, then the parameter can be
set to ui.skype.com because fully qualified hostnames are supported by
nfdump.

IP addresses, that were in connection with Skype HTTP server for the
last four hours and corresponding start time of the flow, will be stored in
the database.

6.1.2 UDP voice call properties

Based on measurements and available documentation of SILK codec we
can introduce traffic filter that deals with voice call properties. As we can
filter flow records in respect to bit rate and other useful fields, the filter for
obtaining flows with voice characteristic will be:

proto udp and duration > 296000 and pps > 15
and pps < 70 and bps > 13000
and bps < 99000 and bpp < 300

As TCP voice calls utilize several connections to supernodes as described
before, the focus was placed on UDP calls. Since the introduced character-
istic of the voice call does not hold true for short periods of time like at
the beginning and at the end of calls (e.g. signalling packets are sent to
the callee after the end of call and influence calculated fields of the flow

34

6. CREATION OF DETECTSKYPE PLUGIN FOR NFSEN

records), flow records that are spanned through the entire time slot (i.e.
5 minutes long flow records) were considered – therefore duration >
296000 msec. As the frames mainly of sizes 20, 40, 60 msec are gener-
ated by SILK voice codec in the rate 50, 25, 16 frames per second, records
are filtered out with packets per second value in this manner with some
overhead. Bytes per packet are set according to measurements i.e. bpp <
300. During processing of flows with given properties there is also check
for the identical flow records. As outside trafic e.g. from CESNET to the
Faculty of Informatics should be captured at two channels, there will be
almost identical flow records for a given flow. They are eliminated by the
check for almost identical start time field (threshold difference 3 seconds).
Each flow with given properties is stored to the database. Every new flow in
the next time slot is checked against these stored flows. If positive match is
found i.e. source address, source port, destination address, destination port
match, then these flows are merged together as continuous flow. If some
flow is not merged with some new flow, then it is considered that the voice
call has ended and this flow is exported to the history database with ad-
ditional values like UDP port (values are explained further in the frontend
plugin section 6.2).

6.1.3 UDP port

Next characteristic for the Skype client is the used UDP port. It is used as
the source and incoming port for the UDP protocol and its value is always
higher than 1024. It is set in the Connection dialog of the client so it is not
dynamically changed during the run of application. Plugin searches for this
port in two situations.

The first one is the moment when the connection to the HTTP server is
detected as depicted in the subsection 6.1.1. Then in the next time slot IP
addresses, from which the connections were established, are searched for
the corresponding Skype UDP ports. Skype initiates UDP probes during
the whole Skype session and, from the flow point of view, the flow consists
of one packet because in the future generated probes to the same peer will
belong to the new flow. Therefore the filter is:

proto udp and src port > 1024 and bpp < 80
and bpp > 40 and packets = 1
and src ip in $filter addresses

Bytes per packet are set in compliance with the packet length statistics
gained from Skype standby measurements and measurements to find out
how similar BitTorrent UDP probing activity is to the one of Skype. Dur-

35

6. CREATION OF DETECTSKYPE PLUGIN FOR NFSEN

ing testing the proposed plugin implementation BitTorrent activity was in-
fluencing this filter. Most of the BitTorrent UDP probe packets have sizes
greater than 90 bytes. For UDP packets of Skype standby measurement
(from 67 hours lasting log) we can present following packets statistics:

Packet lengths Count Percent

40− 79 8472 52.98%

80− 159 522 3.26%

160− 319 6835 42.75%

320− 639 161 1.01%

Therefore bytes per packet parameters are limited by the lower value
40 and upper value 80. Detected flows are aggregated by IP source ad-
dress and source port and the aggregated flows are sorted according to the
aggregation number. Record with most flows is chosen as the representa-
tive one and corresponding source port is selected as possible UDP port of
the Skype application.

Second situation, when the UDP port is searched, is when the start of
potential voice call flow is detected (depicted in subsection 6.1.2). There is
a burst of UDP probes always at the beginning of voice call.

As UDP ports are searched at two different times, we increase the prob-
ability that the port does not belong to some other network activity at a
particular IP address.

6.1.4 Bidirectional property

Voice calls are bidirectional flows so the plugin calculates number of incom-
ing flows to designated IP address and detected UDP port at the start of the
potential call. As the plugin detects flows with the voice call characteristic,
then in the case of incoming video call the incoming flow will be not de-
tected and the bidirectional pattern will be missing. Skype can utilize up to
1.5 Mbps in the case of HD video call so the upper bound for bits per
second parameter was set to 2000000 bits.

proto udp and duration > 296000 and pps > 10
and pps < 210 and bps > 8000
and bps < 2000000 and $filter addr port

If the number of incoming flows to the designated IP address and UDP
port is equal to 0, then the bidirectional property is missing.

36

6. CREATION OF DETECTSKYPE PLUGIN FOR NFSEN

Figure 6.1: DetectSkype plugin frontend.

6.2 Frontend plugin

Frontend plugin is a component of the NfSen web interface. It implements
two mandatory functions DetectSkype ParseInput and
DetectSkype Run. DetectSkype ParseInput is intended to parse pos-
sible form data and is called after selection in the plugins tab.
DetectSkype Run is the main function, it is up to it what will be displayed
in the web browser and what parameters will be sent to the backend plugin.

There are several options to set how detected voice flows to display in
the web browser, see Figure 6.1. User can choose to view stored records for
the last 12 or 24 hours (these values are used to limit the number of lines in
the output table). If selected, then a table with corresponding statistics for
detected flows is displayed. Each line represents flow as described in sub-
section 6.1.2 UDP voice call properties. Continuously captured flow records
from the same IP address and port to the same destination IP address and
port are merged together – number of merged flow records is depicted by
the column Flows. Description of table columns follows:

• Start of the last flow – Start time of the last record from the contin-
uously captured flow records from particular IP address and port to
particular IP address and port.

• Duration – Duration of the last captured flow record.

• Proto – Always UDP protocol as UDP voice calls are searched.

• Src address – Source address.

• Src port – Source port.

• Destination address – Destination address.

37

6. CREATION OF DETECTSKYPE PLUGIN FOR NFSEN

• Dst port – Destination port.

• Avg packets – Average number of packets (per flow record calculated
from the merged records).

• Avg pps – Average packets per second value (per flow record calcu-
lated from the merged records).

• Avg bps – Average bits per second statistics (per flow record calcu-
lated from the merged records).

• Avg bpp – Average bytes per packet statistics (per flow record calcu-
lated from the merged records).

• Flows – Number of continuously captured and after that merged flows.

• uiskype – “Y” represents that connection from Src address to
ui.skype.com was captured during the last 4 hours as described in
subsection 6.1.1.

• UDP uiPort – UDP port that was detected around the time of above
uiskype activity as described in subsection 6.1.3.

• UDP 1stPort – UDP port that was detected around the time the first
flow record was captured as described in subsection 6.1.3.

• Flows to 1stPort – Number of incoming flows to Src address and
UDP 1stPort as described in subsection 6.1.4.

If uiskype equals “Y” and the Src port equals to UDP uiPort and
UDP 1stport, then the line is marked as green as detected Skype voice
call. If the Flows to 1stPort value is 0, then bidirectional pattern is
missing and this flow is not Skype voice call. The value should be lower
than 25 – Skype client can share a conference call with up to 25 people and
group video calls can be between three or more clients (up to a maximum
of 10) [20].

To display flows for particular IP address there is third option in the
frontend plugin to display data statistics. Flow records are stored for two
weeks and records in which given address figures as source address or des-
tination address are displayed. In Figure 6.3, there are displayed flows in
which IP address 147.250.227.183 figures. It is visible also how BitTorrent
activity was filtered out by better choosing parameters for searching UDP
ports. The most upper row shows us a voice call that has lasted for three

38

6. CREATION OF DETECTSKYPE PLUGIN FOR NFSEN

Figure 6.2: DetectSkype plugin frontend, first rows of statistics for the the
last 24 hours. 39

6. CREATION OF DETECTSKYPE PLUGIN FOR NFSEN

Figure 6.3: DetectSkype plugin frontend, statistics for one IP address.
40

6. CREATION OF DETECTSKYPE PLUGIN FOR NFSEN

continuous flow records. That means that the start of the voice call was de-
tected approximately at 12:26:40 (Start of the last flow minus 2
flow records back i.e. 2 ∗ 5 minutes). At that time we can observe incoming
flow that indicates bidirectional character to the detected flow.

6.3 Testing the plugin implementation

Test calls were performed in July 2011 to test the proposed method for voice
calls detection. As the plugin can detect voice calls longer than 5 minutes,
duration of each test call was 17 minutes.

6.3.1 Voice call

In this test regular voice call was established. Computer C1 was connected
to the network of the Faculty of Informatics, Masaryk University. Config-
uration of C1 was MS Windows 7, Skype version 5.3.0.111. Computer C2
was located in Prague (Czech Republic), utilized 10/1 Mbps Internet con-
nection and public IP address.

Call was established from C1 to C2 and lasted 17 minutes. The plugin
detects 5 minutes lasting flow records with voice call characteristic, then 3
flow records should be detected as 3 ∗ 5 < 17. Voice call was successfully
detected and average statistics are rewritten to the following table:

Source C1
Src port 43029
Destination C2
Dst port 35975
Avg pps 49
Avg bps 43725
Avg bpp 110
Flows 3
uiskype Y
UDP uiPort 43029
UDP 1stPort 43029
Flows to 1stPort 1

6.3.2 Voice call from Android device

Voice call from the mobile phone (M1) with Android OS and Skype ver-
sion 2.1.0.46 was established. Mobile phone was connected by WiFi to the

41

6. CREATION OF DETECTSKYPE PLUGIN FOR NFSEN

network of the Faculty of Informatics, Masaryk University.
Call was established from M1 to C2 and lasted 17 minutes. It should be

detected as Skype for Android OS utilizes SILK voice codec in all Skype ver-
sions. Voice call was successfully detected and average statistics are rewrit-
ten to the following table:

Source M1
Src port 38649
Destination C2
Dst port 35975
Avg pps 48
Avg bps 33468
Avg bpp 87
Flows 3
uiskype Y
UDP uiPort 38649
UDP 1stPort 38649
Flows to 1stPort 1

6.3.3 Conference call

Conference voice call from C1 with 3 other Skype clients was established.
Computer C3 was located in Olomouc region (Czech Republic), utilized
2000/500 kbps Internet connection and had non-public IP address. Com-
puter C4 was located in Ostrava (Czech Republic), utilized 4/1 Mbps Inter-
net connection and had public IP address.

Call was established from C1 to C2 at first. C3 and 4 were immediately
invited to the conference call after that. The call lasted 17 minutes. It should
be detected three flows – to C2, C3 and C4. Three voice calls were success-
fully detected and average statistics are rewritten to the following table:

42

6. CREATION OF DETECTSKYPE PLUGIN FOR NFSEN

Source C1 C1 C1
Src port 43029 43029 43029
Destination C2 C3 C4
Dst port 35975 12817 27323
Avg pps 48 50 47
Avg bps 44250 49047 47844
Avg bpp 114 124 121
Flows 3 3 3
uiskype Y Y Y
UDP uiPort 43029 43029 43029
UDP 1stPort 43029 43029 43029
Flows to 1stPort 3 3 3

6.3.4 Voice call during BitTorrent activity

Call was established from C1 to C4 and lasted 17 minutes. During the call
the torrent file with installation image of Ubuntu OS was downloaded by
uTorrent BitTorrent client [21]. Torrent file was downloaded approximately
from 30 seeders concurrently. The purpose was to test if the plugin correctly
detects call if another application that utilizes UDP probes runs concur-
rently. Voice call was successfully detected and average statistics are rewrit-
ten to the following table:

Source C1
Src port 43029
Destination C4
Dst port 27323
Avg pps 48
Avg bps 46288
Avg bpp 120
Flows 3
uiskype Y
UDP uiPort 43029
UDP 1stPort 43029
Flows to 1stPort 1

6.3.5 Video call

Video call with 20 frames per second and 640 x 480 pixels resolution from
C1 to C2 was established and lasted 17 minutes. C1 used integrated web-

43

6. CREATION OF DETECTSKYPE PLUGIN FOR NFSEN

cam with 1.3 MP resolution. It was awaited that the video call will not be
detected because its traffic characteristic is different from regular voice call
traffic. The video call was not detected but average statistics were manually
gained from flow records stored by collector and rewritten to the following
table:

Source C1
Src port 43029
Destination C2
Dst port 35975
Avg pps 97
Avg bps 537779
Avg bpp 694

6.3.6 Conclusion from test results

We can conclude from the performed tests that the plugin correctly detects
UDP voice calls. As the Skype versions for Linux, Mac OS X, Android, Sym-
bian and iOs also use SILK codec as the voice codec, we can rely on per-
formed tests in a way that UDP voice calls established from these Skype
versions will be correctly detected in the same manner. Test performed con-
currently with BitTorrent activity pointed out that the detection method is
reliable in this case.

44

Chapter 7

Conclusion

Network traffic of the Skype application has been studied in this thesis.
Some Skype payload patterns were confirmed for newer versions of appli-
cation as patterns were published only for earlier versions of Skype client,
and additional patterns were newly presented. Our contribution was veri-
fication of proposed papers related to this field for newer versions of appli-
cation – 4.1, 4.2 and 5.3 – and discovering new facts that were not published
so far as we know. We have proposed e.g. new facts about TCP signalling
traffic between Skype client and neighbour supernode, and about regular
TCP traffic to ui.skype.com. From the presented facts it is possible to cre-
ate data payload analyzer that will recognize Skype traffic quite efficient as
similarly mentioned in [1].

Further in this thesis the plugin for NfSen with its backend and frontend
part was presented. As NetFlow records do not offer data payload for in-
spection, approach different to payload analysis was used. Limitations are
that it is quite difficult to recognize TCP relayed traffic as several connec-
tions with no constant traffic and with dynamical source ports are present,
so it was not possible to consider this kind of detection. Characteristics of
UDP voice calls were used for implementation. Test calls subsequently con-
firmed detection capabilities of the plugin.

45

Bibliography

[1] Davide Adami, Christian Callegari, Stefano Giordano, Michele
Pagano, and Teresa Pepe. A Real-Time Algorithm for Skype Traffic
Detection and Classification. In Sergey Balandin, Dmitri Moltchanov,
and Yevgeni Koucheryavy, editors, Smart Spaces and Next Generation
Wired/Wireless Networking, 9th International Conference, NEW2AN
2009 and Second Conference on Smart Spaces, ruSMART 2009, St. Pe-
tersburg, Russia, September 15-18, 2009. Proceedings, volume 5764 of
Lecture Notes in Computer Science, pages 168–179. Springer, 2009.

[2] C. Allen and T. Dierks. RFC 2246 – The TLS Protocol Version 1.0.
http://tools.ietf.org/html/rfc2246, January 1999.

[3] Duffy Angevine and A. Nur Zincir-Heywood. A preliminary investi-
gation of skype traffic classification using a minimalist feature set. In
ARES, pages 1075–1079. IEEE Computer Society, 2008.

[4] Salman Baset and Henning Schulzrinne. An analysis of the skype peer-
to-peer internet telephony protocol. In INFOCOM. IEEE, 2006.

[5] Dario Bonfiglio, Marco Mellia, Michela Meo, Dario Rossi, and Paolo
Tofanelli. Revealing skype traffic: when randomness plays with you.
In Jun Murai and Kenjiro Cho, editors, Proceedings of the ACM SIG-
COMM 2007 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, Kyoto, Japan, August
27-31, 2007, pages 37–48. ACM, 2007.

[6] B. Claise. RFC 3954 – Cisco Systems NetFlow Services Export Version
9. http://tools.ietf.org/html/rfc3954, October 2004.

[7] Sven Ehlert and Sandrine Petgang. Analysis and Signature of
Skype VoIP Session Traffic. In Franunhofer FOKUS Technical Report
NGNISKYPE-06b, July 2006. Berlin, Germany.

[8] H. Astrom, J. Spittka and K. Vos. RTP Payload Format and File Storage
Format for SILK Speech and Audio Codec. http://developer.

46

http://tools.ietf.org/html/rfc2246
http://tools.ietf.org/html/rfc3954
http://developer.skype.com/resources/SILK_RTP_PayloadFormat.pdf

7. CONCLUSION

skype.com/resources/SILK_RTP_PayloadFormat.pdf, Au-
gust 2010.

[9] J. Rosenberg, R. Mahy, P. Matthews and D. Wing. RFC 5389 – Session
Traversal Utilities for NAT (STUN). http://tools.ietf.org/
html/rfc5389, October 2008.

[10] Chun-Ming Leung and Yuen-Yan Chan. Network Forensic on En-
crypted Peer-to-Peer VoIP Traffics and the Detection, Blocking, and
Prioritization of Skype Traffics. In WETICE, pages 401–408. IEEE Com-
puter Society, 2007.

[11] Jonathan Rosenberg. Skype and the Network, Technical Advi-
sory Process Workshop on Broadband Network Management.
http://www.openinternet.gov/workshops/docs/ws_tech_
advisory_process/Skype-FCC.PPTX. Visited 27. 5. 2011.

[12] S. Jensen, K. Soerensen and K. Vos. SILK Speech Codec
draft-vos-silk-01. http://developer.skype.com/resources/
draft-vos-silk-01.txt, March 2010.

[13] Andreas Thomann. Skype - A Baltic Success Story. https:
//infocus.credit-suisse.com/app/article/index.cfm?
fuseaction=OpenArticle&aoid=163167&coid=7805&lang=
EN, September 2006. Visited 21. 2. 2011.

[14] Skype – The Big Blog – 30 million people online on Skype.
http://blogs.skype.com/en/2011/03/30_million_
people_online.html. Visited 27. 4. 2011.

[15] Skype grows FY revenues 20%, reaches 663 mln
users. http://www.telecompaper.com/news/
skype-grows-fy-revenues-20-reaches-663-mln-users,
March 2011. Visited 27. 4. 2011.

[16] IT Administrators guide. http://download.skype.com/share/
business/guides/skype-it-administrators-guide.pdf.
Visited 21. 2. 2011.

[17] NFDUMP. http://nfdump.sourceforge.net. Visited 25. 5. 2011.

[18] NfSen – Netflow Sensor. http://nfsen.sourceforge.net. Vis-
ited 25. 5. 2011.

47

http://developer.skype.com/resources/SILK_RTP_PayloadFormat.pdf
http://developer.skype.com/resources/SILK_RTP_PayloadFormat.pdf
http://tools.ietf.org/html/rfc5389
http://tools.ietf.org/html/rfc5389
http://www.openinternet.gov/workshops/docs/ws_tech_advisory_process/Skype-FCC.PPTX
http://www.openinternet.gov/workshops/docs/ws_tech_advisory_process/Skype-FCC.PPTX
http://developer.skype.com/resources/draft-vos-silk-01.txt
http://developer.skype.com/resources/draft-vos-silk-01.txt
https://infocus.credit-suisse.com/app/article/index.cfm?fuseaction=OpenArticle&aoid=163167&coid=7805&lang=EN
https://infocus.credit-suisse.com/app/article/index.cfm?fuseaction=OpenArticle&aoid=163167&coid=7805&lang=EN
https://infocus.credit-suisse.com/app/article/index.cfm?fuseaction=OpenArticle&aoid=163167&coid=7805&lang=EN
https://infocus.credit-suisse.com/app/article/index.cfm?fuseaction=OpenArticle&aoid=163167&coid=7805&lang=EN
http://blogs.skype.com/en/2011/03/30_million_people_online.html
http://blogs.skype.com/en/2011/03/30_million_people_online.html
http://www.telecompaper.com/news/skype-grows-fy-revenues-20-reaches-663-mln-users
http://www.telecompaper.com/news/skype-grows-fy-revenues-20-reaches-663-mln-users
http://download.skype.com/share/business/guides/skype-it-administrators-guide.pdf
http://download.skype.com/share/business/guides/skype-it-administrators-guide.pdf
http://nfdump.sourceforge.net
http://nfsen.sourceforge.net

7. CONCLUSION

[19] SILK Data Sheet. http://developer.skype.com/resources/
SILKDataSheet.pdf. Visited 21. 2. 2011.

[20] Free Skype calls and cheap calls to phones – Skype. http://www.
skype.com. Visited 21. 2. 2011.

[21] uTorrent – A (very) tiny BitTorrent client. http://www.utorrent.
com. Visited 12. 7. 2011.

[22] Help for Skype: How much bandwidth does Skype
need? https://support.skype.com/en/faq/FA1417/
How-much-bandwidth-does-Skype-need. Visited 7. 4. 2011.

[23] Kazaa – Wikipedia, the free encyclopedia. http://en.wikipedia.
org/wiki/Kazaa. Visited 21. 2. 2011.

[24] NetFlow – Wikipedia, the free encyclopedia. http://en.
wikipedia.org/wiki/Netflow. Visited 20. 5. 2011.

[25] Skype – Wikipedia, the free encyclopedia. http://en.wikipedia.
org/wiki/Skype. Visited 12. 5. 2011.

[26] SVOPC – Wikipedia, the free encyclopedia. http://en.
wikipedia.org/wiki/SVOPC. Visited 20. 5. 2011.

[27] Wireshark. Go deep. http://www.wireshark.org. Visited
12. 7. 2011.

48

http://developer.skype.com/resources/SILKDataSheet.pdf
http://developer.skype.com/resources/SILKDataSheet.pdf
http://www.skype.com
http://www.skype.com
http://www.utorrent.com
http://www.utorrent.com
https://support.skype.com/en/faq/FA1417/How-much-bandwidth-does-Skype-need
https://support.skype.com/en/faq/FA1417/How-much-bandwidth-does-Skype-need
http://en.wikipedia.org/wiki/Kazaa
http://en.wikipedia.org/wiki/Kazaa
http://en.wikipedia.org/wiki/Netflow
http://en.wikipedia.org/wiki/Netflow
http://en.wikipedia.org/wiki/Skype
http://en.wikipedia.org/wiki/Skype
http://en.wikipedia.org/wiki/SVOPC
http://en.wikipedia.org/wiki/SVOPC
http://www.wireshark.org

	Introduction
	Skype history
	Skype
	 Skype entities
	 Key components
	 Ports
	 Host cache
	 Encryption

	Skype traffic analysis
	 Stages in Skype network conversation
	 Startup and UDP probing
	 TCP handshake with supernode
	 Authentication
	 Skype latest version check
	 NAT and firewall determination
	 Going online
	 Going offline

	 Voice call properties
	 Voice codec
	 Call placement

	 Proposed voice call detection method

	NetFlow protocol
	 NfSen and NFDUMP
	 NFDUMP
	 NfSen
	 Plugins for NfSen

	Creation of DetectSkype plugin for NfSen
	 Backend plugin
	 TCP traffic to ui.skype.com
	 UDP voice call properties
	 UDP port
	 Bidirectional property

	 Frontend plugin
	 Testing the plugin implementation
	 Voice call
	 Voice call from Android device
	 Conference call
	 Voice call during BitTorrent activity
	 Video call
	 Conclusion from test results

	Conclusion

